Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Chemistry

The Role Of Catalytic Residue PKA On The Hydrolysis/Transglycosylation Partition In Family 3 Β-Glucosidases, Inacrist Geronimo, Christina M. Payne, Mats Sandgren Dec 2017

The Role Of Catalytic Residue PKA On The Hydrolysis/Transglycosylation Partition In Family 3 Β-Glucosidases, Inacrist Geronimo, Christina M. Payne, Mats Sandgren

Chemical and Materials Engineering Faculty Publications

β-Glucosidases (βgls) primarily catalyze the hydrolysis of the terminal glycosidic bond at the non-reducing end of β-glucosides, although glycosidic bond synthesis (called transglycosylation) can also occur in the presence of another acceptor. In the final reaction step, the glucose product or another substrate competes with water for transfer to the glycosyl-enzyme intermediate. The factors governing the balance between the two pathways are not fully known; however, the involvement of ionizable residues in binding and catalysis suggests that their pKa may play a role. Through constant pH molecular dynamics simulations of a glycoside hydrolase Family 3 (GH3) βgl, we …


Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya Dec 2017

Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

New and advanced opportunities are arising for the synthesis and functionalization of membranes with selective separation, reactivity, and stimuli-responsive behavior. One such advancement is the integration of bio-based channels in membrane technologies. By a layer-by-layer (LbL) assembly of polyelectrolytes, outer membrane protein F trimers (OmpF) or “porins” from Escherichia coli with central pores ∼2 nm in diameter at their opening and ∼0.7 × 1.1 nm at their constricted region are immobilized within the pores of poly(vinylidene fluoride) microfiltration membranes, in contrast to traditional ruptured lipid bilayer or vesicle processes. These OmpF-membranes demonstrate selective rejection of non-charged organics over ionic solutes, …


Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt Dec 2017

Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt

Chemical and Materials Engineering Faculty Publications

A novel crosslinker [4,4′-dihydroxybiphenyl diacrylate (44BDA)] was developed, and a series of temperature-responsive hydrogels were synthesized through free radical polymerization of N-isopropylacrylamide (NIPAAm) with 44BDA. The temperature-responsive behavior of the resulting gels was characterized by swelling studies, and the lower critical solution temperature (LCST) of the hydrogels was characterized through differential scanning calorimetry. Increased content of 44BDA led to a decreased swelling ratio and shifted the LCST to lower temperatures. These novel hydrogels also displayed resiliency through multiple swelling–deswelling cycles, and their temperature responsiveness was reversible. The successful synthesis of NIPAAm-based hydrogels crosslinked with 44BDA has led to a …


Real-Time Sensing Of Single-Ligand Delivery With Nanoaperture-Integrated Microfluidic Devices, W. Elliott Martin, Ning Ge, Bernadeta R. Srijanto, Emily Furnish, C. Patrick Collier, Christine A. Trinkle, Christopher I. Richards Jul 2017

Real-Time Sensing Of Single-Ligand Delivery With Nanoaperture-Integrated Microfluidic Devices, W. Elliott Martin, Ning Ge, Bernadeta R. Srijanto, Emily Furnish, C. Patrick Collier, Christine A. Trinkle, Christopher I. Richards

Chemistry Faculty Publications

The measurement of biological events on the surface of live cells at the single-molecule level is complicated by several factors including high protein densities that are incompatible with single-molecule imaging, cellular autofluorescence, and protein mobility on the cell surface. Here, we fabricated a device composed of an array of nanoscale apertures coupled with a microfluidic delivery system to quantify single-ligand interactions with proteins on the cell surface. We cultured live cells directly on the device and isolated individual epidermal growth factor receptors (EGFRs) in the apertures while delivering fluorescently labeled epidermal growth factor. We observed single ligands binding to EGFRs, …


Real-Time Atomistic Observation Of Structural Phase Transformations In Individual Hafnia Nanorods, Bethany M. Hudak, Sean W. Depner, Gregory R. Waetzig, Anjana Talapatra, Raymundo Arroyave, Sarbajit Banerjee, Beth S. Guiton May 2017

Real-Time Atomistic Observation Of Structural Phase Transformations In Individual Hafnia Nanorods, Bethany M. Hudak, Sean W. Depner, Gregory R. Waetzig, Anjana Talapatra, Raymundo Arroyave, Sarbajit Banerjee, Beth S. Guiton

Chemistry Faculty Publications

High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with …


Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin Mar 2017

Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin

Chemical and Materials Engineering Faculty Publications

Mesoporous titania (mp-TiO2) has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to …


Single Molecule-Level Study Of Donor-Acceptor Interactions And Nanoscale Environment In Blends, Nicole Quist, Rebecca Grollman, Jeremy Rath, Alex Robertson, Michael Haley, John E. Anthony, Oksana Ostroverkhova Feb 2017

Single Molecule-Level Study Of Donor-Acceptor Interactions And Nanoscale Environment In Blends, Nicole Quist, Rebecca Grollman, Jeremy Rath, Alex Robertson, Michael Haley, John E. Anthony, Oksana Ostroverkhova

Chemistry Faculty Publications

Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules …


Charge Transport In Electronic-Ionic Composites, Long Zhang Jan 2017

Charge Transport In Electronic-Ionic Composites, Long Zhang

Theses and Dissertations--Chemical and Materials Engineering

The goal of this thesis is to generate fundamental understandings of charge transport behaviors of composites consisting of garnet structured Al substituted Li7La3Zr2O12 (LLZO) electrolyte and LiCoO2 electrode. In order to take full advantage of all-solid-state batteries, bulk type composite electrodes should be introduced to increase energy and power density. However, the charge utilization of bulk type composite electrodes is quite low. Understanding ionic conduction behavior is, therefore, important for improving the performance of all-solid-state batteries, because ion conduction within solids depends on effective pathways. Electronic conductivity can be easily compensated by …


Acenes, Heteroacenes And Analogous Molecules For Organic Photovoltaic And Field Effect Transistor Applications, Devin B. Granger Jan 2017

Acenes, Heteroacenes And Analogous Molecules For Organic Photovoltaic And Field Effect Transistor Applications, Devin B. Granger

Theses and Dissertations--Chemistry

Polycyclic aromatic hydrocarbons composed of benzenoid rings fused in a linear fashion comprise the class of compounds known as acenes. The structures containing three to six ring fusions are brightly colored and possess band gaps and charge transport efficiencies sufficient for semiconductor applications. These molecules have been investigated throughout the past several decades to assess their optoelectronic properties. The absorption, emission and charge transport properties of this series of molecules has been studied extensively to elucidate structure-property relationships. A wide variety of analogous molecules, incorporating heterocycles in place of benzenoid rings, demonstrate similar properties to the parent compounds and have …