Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Effects Of Hole Transporting Layers And Surface Ligands On Interface Energetics And Photovoltaic Performance Of Methylammonium Lead Iodide Perovskites, So Min Park Jan 2020

Effects Of Hole Transporting Layers And Surface Ligands On Interface Energetics And Photovoltaic Performance Of Methylammonium Lead Iodide Perovskites, So Min Park

Theses and Dissertations--Chemical and Materials Engineering

Organic metal halide perovskites are promising materials for various optoelectronic device applications such as light emitting diodes (LED) and photovoltaic (PV) cells. Perovskite solar cells (PSCs) have shown dramatic increases in power conversion efficiency over the previous ten years, far exceeding the rate of improvement of all other PV technologies. PSCs have attracted significant attention due to their strong absorbance throughout the visible region, high charge carrier mobilities, color tunability, and ability to make ultralight weight devices. However, organic metal halide perovskites still face several challenges. For example, their environmental stability issue must be overcome to enable widespread commercialization. Meeting …


Charge Transport In Electronic-Ionic Composites, Long Zhang Jan 2017

Charge Transport In Electronic-Ionic Composites, Long Zhang

Theses and Dissertations--Chemical and Materials Engineering

The goal of this thesis is to generate fundamental understandings of charge transport behaviors of composites consisting of garnet structured Al substituted Li7La3Zr2O12 (LLZO) electrolyte and LiCoO2 electrode. In order to take full advantage of all-solid-state batteries, bulk type composite electrodes should be introduced to increase energy and power density. However, the charge utilization of bulk type composite electrodes is quite low. Understanding ionic conduction behavior is, therefore, important for improving the performance of all-solid-state batteries, because ion conduction within solids depends on effective pathways. Electronic conductivity can be easily compensated by …


Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan Jan 2016

Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan

Theses and Dissertations--Chemical and Materials Engineering

Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si …