Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Mesoporous Re0.5ce0.5o2-X Fluorite Electrocatalysts For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Harish Singh, Sam Spinuzzi, Manashi Nath, Katharine Page Feb 2024

Mesoporous Re0.5ce0.5o2-X Fluorite Electrocatalysts For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Harish Singh, Sam Spinuzzi, Manashi Nath, Katharine Page

Chemistry Faculty Research & Creative Works

Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO2 reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO2 fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in …


Quaternary Rare-Earth Oxyselenides Re4ga2se7o2 (Re = Pr, Nd) With Trigonal Bipyramidal Gase5 Units: Evaluation Of Optical, Thermoelectric, And Electrocatalytic Properties, Vidyanshu Mishra, Ibrahim Munkaila Abdullahi, Dundappa Mumbaraddi, Mohammed Jomaa, Louis Guérin, Manashi Nath, Arthur Mar Jan 2024

Quaternary Rare-Earth Oxyselenides Re4ga2se7o2 (Re = Pr, Nd) With Trigonal Bipyramidal Gase5 Units: Evaluation Of Optical, Thermoelectric, And Electrocatalytic Properties, Vidyanshu Mishra, Ibrahim Munkaila Abdullahi, Dundappa Mumbaraddi, Mohammed Jomaa, Louis Guérin, Manashi Nath, Arthur Mar

Chemistry Faculty Research & Creative Works

Phase-pure samples and single crystals of the rare-earth oxyselenides RE4Ga2Se7O2 (RE = Pr, Nd) were prepared by reactions at 950 °C. They adopt a new structure type (orthorhombic, space group Pnma, a = 11.721(2)-11.683(2) Å, b = 3.9882(7)-3.9667(7) Å, c = 29.644(5)-29.581(5) Å, Z = 4) consisting of RESe6 trigonal prisms, GaSe4 tetrahedra, and GaSe5 trigonal bipyramids linked to form corrugated layers between which strips of edge-sharing RE4O tetrahedra are inserted. The bonding character is mostly ionic within RE-O and RE-Se blocks but mostly covalent with Ga-Se blocks, …


Tailored (La0.2pr0.2nd0.2tb0.2dy0.2)2ce2o7 As A Highly Active And Stable Nanocatalyst For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Palani Raja Jothi, Bo Jiang, Manashi Nath, Katharine Page Jan 2024

Tailored (La0.2pr0.2nd0.2tb0.2dy0.2)2ce2o7 As A Highly Active And Stable Nanocatalyst For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Palani Raja Jothi, Bo Jiang, Manashi Nath, Katharine Page

Chemistry Faculty Research & Creative Works

Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self-assembly (EISA) can be used to synthesize highly porous and high surface area cerate-based fluorite nano catalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nano catalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is …