Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Chemistry

The Catalytic Mechanism Of Electron-Bifurcating Electron Transfer Flavoproteins (Etfs) Involves An Intermediary Complex With Nad+, Gerrit J. Schut, Nishya Mohamed-Raseek, Monika Tokmina-Lukaszewska, David W. Mulder, Diep M. N. Nguyen, Gina L. Lipscomb, John Patrick Hoben, Angela Patterson, Carolyn E. Lubner, Paul W. King, John W. Peters, Brian Bothner, Anne-Frances Miller, Michael W. W. Adams Dec 2018

The Catalytic Mechanism Of Electron-Bifurcating Electron Transfer Flavoproteins (Etfs) Involves An Intermediary Complex With Nad+, Gerrit J. Schut, Nishya Mohamed-Raseek, Monika Tokmina-Lukaszewska, David W. Mulder, Diep M. N. Nguyen, Gina L. Lipscomb, John Patrick Hoben, Angela Patterson, Carolyn E. Lubner, Paul W. King, John W. Peters, Brian Bothner, Anne-Frances Miller, Michael W. W. Adams

Chemistry Faculty Publications

Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum. The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis …


Canvass: A Crowd-Sourced, Natural-Product Screening Library For Exploring Biological Space, Sara E. Kearney, Gergely ZahoráNszky-KőHalmi, Kyle R. Brimacombe, Mark J. Henderson, Caitlin Lynch, Tongan Zhao, Kanny K. Wan, Zina Itkin, Christopher Dillon, Min Shen, Dorian M. Cheff, Tobie D. Lee, Danielle Bougie, Ken Cheng, Nathan P. Coussens, Dorjbal Dorjsuren, Richard T. Eastman, Ruili Huang, Michael J. Iannotti, Surendra Karavadhi, Carleen Klumpp-Thomas, Jacob S. Roth, Srilatha Sakamuru, Wei Sun, Steven A. Titus, Adam Yasgar, Ya-Qin Zhang, Jinghua Zhao, Rodrigo B. Andrade, M. Kevin Brown, Robert B. Grossman Dec 2018

Canvass: A Crowd-Sourced, Natural-Product Screening Library For Exploring Biological Space, Sara E. Kearney, Gergely ZahoráNszky-KőHalmi, Kyle R. Brimacombe, Mark J. Henderson, Caitlin Lynch, Tongan Zhao, Kanny K. Wan, Zina Itkin, Christopher Dillon, Min Shen, Dorian M. Cheff, Tobie D. Lee, Danielle Bougie, Ken Cheng, Nathan P. Coussens, Dorjbal Dorjsuren, Richard T. Eastman, Ruili Huang, Michael J. Iannotti, Surendra Karavadhi, Carleen Klumpp-Thomas, Jacob S. Roth, Srilatha Sakamuru, Wei Sun, Steven A. Titus, Adam Yasgar, Ya-Qin Zhang, Jinghua Zhao, Rodrigo B. Andrade, M. Kevin Brown, Robert B. Grossman

Chemistry Faculty Publications

Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The …


Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei Dec 2018

Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei

Chemistry Faculty Publications

This paper presented the dataset of correction parameters used in the determination of the energy transfer efficiencies from the spectrum-based fluorescence resonance energy transfer (FRET) measurement in a trimeric membrane protein AcrB. The cyan fluorescent protein (CFP) and yellow fluorescent protein (YPet) were used as the donor and acceptor, respectively. Two AcrB fusion proteins were constructed, AcrB-CFP and AcrB-YPet. The proteins were co-expressed in Escherichia coli cells, and energy transfer efficiency were determined in live cells. To obtain reliable energy transfer data, a complete set of correction parameters need to be first determined to accommodate for factors such as background …


Intranasal Rapamycin Ameliorates Alzheimer-Like Cognitive Decline In A Mouse Model Of Down Syndrome, Antonella Tramutola, Chiara Lanzillotta, Eugenio Barone, Andrea Arena, Ilaria Zuliani, Luciana Mosca, Carla Blarzino, D. Allan Butterfield, Marzia Perluigi, Fabio Di Domenico Nov 2018

Intranasal Rapamycin Ameliorates Alzheimer-Like Cognitive Decline In A Mouse Model Of Down Syndrome, Antonella Tramutola, Chiara Lanzillotta, Eugenio Barone, Andrea Arena, Ilaria Zuliani, Luciana Mosca, Carla Blarzino, D. Allan Butterfield, Marzia Perluigi, Fabio Di Domenico

Chemistry Faculty Publications

Background: Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease (AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression. Within this context, the therapeutic use of mTOR-inhibitors may prevent/attenuate the neurodegenerative phenomena. By our work we aimed to rescue mTOR signalling …


Doxorubicin-Induced Elevated Oxidative Stress And Neurochemical Alterations In Brain And Cognitive Decline: Protection By Mesna And Insights Into Mechanisms Of Chemotherapy-Induced Cognitive Impairment ("Chemobrain"), Jeriel T. R. Keeney, Xiaojia Ren, Govind Warrier, Teresa Noel, David K. Powell, Jennifer M. Brelsfoard, Rukhsana Sultana, Kathryn E. Saatman, Daret K. St. Clair, D. Allan Butterfield Jul 2018

Doxorubicin-Induced Elevated Oxidative Stress And Neurochemical Alterations In Brain And Cognitive Decline: Protection By Mesna And Insights Into Mechanisms Of Chemotherapy-Induced Cognitive Impairment ("Chemobrain"), Jeriel T. R. Keeney, Xiaojia Ren, Govind Warrier, Teresa Noel, David K. Powell, Jennifer M. Brelsfoard, Rukhsana Sultana, Kathryn E. Saatman, Daret K. St. Clair, D. Allan Butterfield

Chemistry Faculty Publications

Chemotherapy-induced cognitive impairment (CICI) is now widely recognized as a real and too common complication of cancer chemotherapy experienced by an ever-growing number of cancer survivors. Previously, we reported that doxorubicin (Dox), a prototypical reactive oxygen species (ROS)-producing anti-cancer drug, results in oxidation of plasma proteins, including apolipoprotein A-I (ApoA-I) leading to tumor necrosis factor-alpha (TNF-α)-mediated oxidative stress in plasma and brain. We also reported that co-administration of the antioxidant drug, 2-mercaptoethane sulfonate sodium (MESNA), prevents Dox-induced protein oxidation and subsequent TNF-α elevation in plasma. In this study, we measured oxidative stress in both brain and plasma of Dox-treated mice …


Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman Jul 2018

Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols of variable composition, size, and shape are associated with public health concerns as well as with light-particle interactions that play a role in the energy balance of the atmosphere. Photochemical reactions of 2-oxocarboxylic acids in the aqueous phase are now known to contribute to the total secondary organic aerosol (SOA) budget. This work explores the cross reaction of glyoxylic acid (GA) and pyruvic acid (PA) in water, the two most abundant 2-oxocarboxylic acids in the atmosphere, under solar irradiation and dark thermal aging steps. During irradiation, PA and GA are excited and initiate proton-coupled electron transfer or hydrogen abstraction …


Treatment Of Mci And Alzheimer's Disease, Mark A. Lovell, Bert C. Lynn May 2018

Treatment Of Mci And Alzheimer's Disease, Mark A. Lovell, Bert C. Lynn

Chemistry Faculty Patents

The present invention provides, among other things, therapeutic compositions and methods that can effectively treat, slow or prevent a neurological disease (e.g., a neurodegenerative disease, e.g., mild cognitive impairment (MCI) or Alzheimer's disease (AD)), in particular, based on therapeutically effective amount of nifedipine, oxidized or nitroso nifedipine derivatives, lactam (e.g., a compound of formula (Ic) or (Ic-i), e.g., NFD-L1), thyroxine (T4), triiodothyronine (T3) and combinations thereof.


Mammalian Cell-Derived Vesicles For The Isolation Of Organelle Specific Transmembrane Proteins To Conduct Single Molecule Studies, Faruk H. Moonschi, Ashley M. Fox-Loe, Xu Fu, Christopher I. Richards May 2018

Mammalian Cell-Derived Vesicles For The Isolation Of Organelle Specific Transmembrane Proteins To Conduct Single Molecule Studies, Faruk H. Moonschi, Ashley M. Fox-Loe, Xu Fu, Christopher I. Richards

Chemistry Faculty Publications

Cell-derived vesicles facilitate the isolation of transmembrane proteins in their physiological membrane maintaining their structural and functional integrity. These vesicles can be generated from different cellular organelles producing, housing, or transporting the proteins. Combined with single molecule imaging, isolated organelle specific vesicles can be employed to study the trafficking and assembly of the embedded proteins. Here we present a method for organelle specific single molecule imaging via isolation of ER and plasma membrane vesicles from HEK293T cells by employing OptiPrep gradients and nitrogen cavitation. The isolation was validated through Western blotting, and the isolated vesicles were used to perform single …


Distinct Properties Underlie Flavin-Based Electron Bifurcation In A Novel Electron Transfer Flavoprotein Fixab From Rhodopseudomonas Palustris, H. Diessel Duan, Carolyn E. Lubner, Monika Tokmina-Lukaszewska, George H. Gauss, Brian Bothner, Paul W. King, John W. Peters, Anne-Frances Miller Feb 2018

Distinct Properties Underlie Flavin-Based Electron Bifurcation In A Novel Electron Transfer Flavoprotein Fixab From Rhodopseudomonas Palustris, H. Diessel Duan, Carolyn E. Lubner, Monika Tokmina-Lukaszewska, George H. Gauss, Brian Bothner, Paul W. King, John W. Peters, Anne-Frances Miller

Chemistry Faculty Publications

A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV–visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to …


Informing Efforts To Develop Nitroreductase For Amine Production, Anne-Frances Miller, Jonathan T. Park, Kyle L. Ferguson, Warintra Pitsawong, Andreas S. Bommarius Jan 2018

Informing Efforts To Develop Nitroreductase For Amine Production, Anne-Frances Miller, Jonathan T. Park, Kyle L. Ferguson, Warintra Pitsawong, Andreas S. Bommarius

Chemistry Faculty Publications

Nitroreductases (NRs) hold promise for converting nitroaromatics to aromatic amines. Nitroaromatic reduction rate increases with Hammett substituent constant for NRs from two different subgroups, confirming substrate identity as a key determinant of reactivity. Amine yields were low, but compounds yielding amines tend to have a large π system and electron withdrawing substituents. Therefore, we also assessed the prospects of varying the enzyme. Several different subgroups of NRs include members able to produce aromatic amines. Comparison of four NR subgroups shows that they provide contrasting substrate binding cavities with distinct constraints on substrate position relative to the flavin. The unique architecture …


Applications Of Cell-Derived Vesicles: From Single Molecule Studies To Drug Delivery, Faruk H. Moonschi Jan 2018

Applications Of Cell-Derived Vesicles: From Single Molecule Studies To Drug Delivery, Faruk H. Moonschi

Theses and Dissertations--Chemistry

Single molecule studies can provide information of biological molecules which otherwise is lost in ensemble studies. A wide variety of fluorescence-based techniques are utilized for single molecule studies. While these tools have been widely applied for imaging soluble proteins, single molecule studies of transmembrane proteins are much more complicated. A primary reason for this is that, unlike membrane proteins, soluble proteins can be easily isolated from the cellular environment. One approach to isolate membrane proteins into single molecule level involves a very low label expression of the protein in cells. However, cells generate background fluorescence leading to a very low …


Protein Suppression Of Flavin Semiquinone As A Mechanistically Important Control Of Reactivity: A Study Comparing Flavoenzymes Which Differ In Redox Properties, Substrates, And Ability To Bifurcate Electrons, John Patrick Hoben Jan 2018

Protein Suppression Of Flavin Semiquinone As A Mechanistically Important Control Of Reactivity: A Study Comparing Flavoenzymes Which Differ In Redox Properties, Substrates, And Ability To Bifurcate Electrons, John Patrick Hoben

Theses and Dissertations--Chemistry

A growing number of flavoprotein systems have been observed to bifurcate pairs of electrons. Flavin-based electron bifurcation (FBEB) results in products with greater reducing power than that of the reactants with less reducing power. Highly reducing electrons at low reduction midpoint potential are required for life processes of both aerobic and anaerobic metabolic processes. For electron bifurcation to function, the semiquinone (SQ) redox intermediate needs to be destabilized in the protein to suppress its ability to trap electrons. This dissertation examines SQ suppression across a number of flavin systems for the purpose of better understanding the nature of SQ suppression …