Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr. Apr 2016

Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr.

Doctoral Dissertations

The National Cancer Institute and the American Cancer Society estimate that 1.6 million new cancer incidences and over half a million cancer related deaths occur annually [1][2]. Cancer the second most common cause of death in the United States [1], [2]. Although the causes of cancer can vary depending on cell type, all or almost all instances of cancer arise from a mutation or from an abnormal activation of the cellular genes that control cell growth and mitosis [3].

Treatment of a given cancer type depends on the subtype, stage and progression of the cancer. Varieties of cancer therapy include …


Multiscale Modeling Of Enzyme-Catalyzed Methanol Production By Particulate Methane Monooxygenase, Katherine K. Bearden Apr 2013

Multiscale Modeling Of Enzyme-Catalyzed Methanol Production By Particulate Methane Monooxygenase, Katherine K. Bearden

Doctoral Dissertations

In this work, the conversion of methane to methanol by the particulate Methane Monooxygenase (pMMO) enzyme is investigated using a multi-scale modeling approach. This enzyme participates in carbon cycling and aids in the removal of harmful atmospheric methane, converting it to methanol. The interaction between pMMO and a neighboring enzyme that is present in the same organism is studied, and the unknown pMMO active site is elucidated and tested for methane oxidation towards the production of methanol.

Fundamental knowledge of pMMO's mechanism is not fully understood. Understanding how this enzyme works in nature will provide information towards designing efficient synthetic …


Microcapsule Biosensors Based On Competitive Binding And Fluorescence Resonance Energy Transfer Assays, Swetha Chinnayelka Oct 2005

Microcapsule Biosensors Based On Competitive Binding And Fluorescence Resonance Energy Transfer Assays, Swetha Chinnayelka

Doctoral Dissertations

Fluorescent sensing systems offer the potential for minimally invasive monitoring with implantable devices, but they require carrier technologies that provide suitable immobilization, accessibility, and biocompatibility while maintaining adequate response characteristics. Towards the development of this goal, a general design of a biosensor with the capability of detecting different metabolites was investigated. The approach is based on the encapsulation of a competitive binding assay in microcapsules and monitoring the changes in fluorescence resonance energy transfer (FRET) in the presence of analyte. To experimentally demonstrate this type of sensing system, glucose was chosen as the model target analyte. The design, fabrication, and …