Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Chemistry

Ruthenium Catalyzed Deaminative Coupling Reaction Of Amines Via C-N Bond Activation, Pandula T. Kirinde Arachchige Oct 2017

Ruthenium Catalyzed Deaminative Coupling Reaction Of Amines Via C-N Bond Activation, Pandula T. Kirinde Arachchige

Master's Theses (2009 -)

C–N bond activation via transition-metal catalyst has attracted much attention during the past two decades. This strategy has become one of the most promising way to generate secondary amines, which are very important in a broad spectrum of applications in pharmaceutical industry, synthetic organic chemistry and material science. The secondary amines can be utilized as an important synthetic intermediate for further manipulations. The in-situ formed catalytic system generated from the tetranuclear Ru–H complex with 4-(1,1-dimethylethyl)-1,2-benzenediol ligand was found to be effective for the synthesis of secondary amines from the direct deaminative coupling of amines. The ruthenium catalyst was highly effective …


Ruthenium-Catalyzed Dehydrogenative And Dehydrative C-H Coupling Reactions Of Arenes With Alcohols And Carbonyl Compounds, Hanbin Lee Apr 2017

Ruthenium-Catalyzed Dehydrogenative And Dehydrative C-H Coupling Reactions Of Arenes With Alcohols And Carbonyl Compounds, Hanbin Lee

Dissertations (1934 -)

Despite their outstanding achievements, the requirement of preformed functional groups and wasteful byproduct formation are inherent disadvantages associated with the transition metal catalyzed cross-coupling methods. Inspired by the needs for green and sustainable chemistry, transition metal catalyzed dehydrogenative and dehydrative coupling methods have been recognized as environmentally sustainable and atom economical synthetic routes for the new C-C bond formation. The catalytic activation of C-H and C-O bonds allows the formation of coupling products from ubiquitous hydrocarbon substrates by releasing hydrogen or water byproduct. However, these novel protocols require relatively harsh conditions due to their low reactivity of C-H and C-O …


Photochemical Properties And Structure-Activity Relationships Of RuIi Complexes With Pyridylbenzazole Ligands As Promising Anticancer Agents, Dmytro Havrylyuk, David K. Heidary, Leona Nease, Sean Parkin, Edith C. Glazer Mar 2017

Photochemical Properties And Structure-Activity Relationships Of RuIi Complexes With Pyridylbenzazole Ligands As Promising Anticancer Agents, Dmytro Havrylyuk, David K. Heidary, Leona Nease, Sean Parkin, Edith C. Glazer

Chemistry Faculty Publications

Ruthenium complexes capable of light‐triggered cytotoxicity are appealing potential prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT). Two groups of (polypyridyl)RuII complexes with 2‐(2‐pyridyl)benzazole ligands were synthesized and investigated for their photochemical properties and anticancer activity to compare strained and unstrained systems that are likely to have different biological mechanisms of action. The structure–activity relationship was focused on the benzazole‐core bioisosterism and replacement of coligands in RuII complexes. Strained compounds rapidly ejected the 2‐(2‐pyridyl)benzazole ligand after light irradiation, and possessed strong toxicity in the HL‐60 cell line both under dark and light conditions. In contrast, unstrained Ru …


Design, Synthesis And Analysis Of Potential Photo-Activatable Cathepsin K Inhibitors, Khalin Evania Nisbett Jan 2017

Design, Synthesis And Analysis Of Potential Photo-Activatable Cathepsin K Inhibitors, Khalin Evania Nisbett

Wayne State University Theses

Abstract

DESIGN, SYNTHESIS AND ANALYSIS OF POTENTIAL PHOTO-ACTIVATABLE CATHEPSIN K INHIBITORS

by

KHALIN NISBETT

May 2017

Advisor: Dr. Jeremy Kodanko

Major: Chemistry

Degree: Master of Science

Tightly regulated cysteine CA proteases play a major role in maintaining the homeostasis within cells. Subsequently, when these proteases are dysregulated and mislocalized they disrupt healthy cell dynamics and contribute to many life-threatening pathologies such arteriosclerosis, osteoporosis and cancer. As such many pharmaceutical companies and research teams are highly interested in these proteases as targets. One emergent strategy is the spatiotemporal control of biological processes. In relation to this, a series of spatiotemporally controlled …