Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry

PDF

Open Access Dissertations

Pure sciences

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Redox-Active Ligand Uranium Complexes For Approaches To Multi-Electron Chemistry, John J. Kiernicki Dec 2016

Redox-Active Ligand Uranium Complexes For Approaches To Multi-Electron Chemistry, John J. Kiernicki

Open Access Dissertations

While transition metal complexes are known to participate in multi-electron redox chemistry to facilitate important organometallic transformations, actinides, due to their low redox potentials, have a propensity to perform single electron chemistry. Because of its highly reducing nature, the ability to control the electronics of low-valent uranium is highly sought after as this may lead to unprecedented reactivity. Our lab has specifically been interested in mediating multi-electron transformations at uranium by employing redox-active ligands. Redox-active ligands can be used to facilitate multi-electron processes such as oxidative addition and reductive elimination at single metal centers. Using primarily 2,6-((Mes)N=CMe)2C5H3N) ( MesPDIMe) as …


Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates Oct 2013

Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates

Open Access Dissertations

The recent application of metal-exchanged, small-pore zeolites for use in the selective catalytic reduction (SCR) of NOx with ammonia NH3 for automotive deNOx applications has been a great stride in achieving emission standard goals. Copper-exchanged SSZ-13 (Cu-SSZ-13), the small-pore zeolite in this study, has been shown to be very hydrothermally stable and active under conditions presented in the exhaust of the lean-burn diesel engine. In this work, detailed studies were performed to identify many aspects of the active site(s) in Cu-SSZ-13 in order to learn about the standard SCR mechanism.

A series of seven Cu-SSZ-13 samples were …


Spectroscopic Characterization Of The Water-Oxidation Intermediates In The Ru-Based Catalysts For Artificial Photosynthesis, Dooshaye Moonshiram Oct 2013

Spectroscopic Characterization Of The Water-Oxidation Intermediates In The Ru-Based Catalysts For Artificial Photosynthesis, Dooshaye Moonshiram

Open Access Dissertations

Utilization of sunlight requires solar capture, light-to-energy conversion and storage. One effective way to store energy is to convert it into chemical energy by fuel-forming reactions, such as water splitting into hydrogen and oxygen. Ruthenium complexes are among few molecular-defined catalysts capable of water splitting. Insight into the mechanism of their action will help to design future robust and economically feasible catalysts for light-to-energy conversion. Mechanistic insights about the design of such catalysts can be acquired through spectroscopic analysis of short-lived intermediates of catalytic water oxidation. Development of time-resolved approaches through stopped flow UV-Vis Spectroscopy to follow the catalysis of …