Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Chemistry

Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya Dec 2017

Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

New and advanced opportunities are arising for the synthesis and functionalization of membranes with selective separation, reactivity, and stimuli-responsive behavior. One such advancement is the integration of bio-based channels in membrane technologies. By a layer-by-layer (LbL) assembly of polyelectrolytes, outer membrane protein F trimers (OmpF) or “porins” from Escherichia coli with central pores ∼2 nm in diameter at their opening and ∼0.7 × 1.1 nm at their constricted region are immobilized within the pores of poly(vinylidene fluoride) microfiltration membranes, in contrast to traditional ruptured lipid bilayer or vesicle processes. These OmpF-membranes demonstrate selective rejection of non-charged organics over ionic solutes, …


Catalyzed Synthesis Of Zinc Clays By Prebiotic Central Metabolites, Marcelo I. Guzman, Ruixin Zhou, Kaustuv Basu, Hyman Hartman, Christopher J. Matocha, S. Kelly Sears, Hajatollah Vali Apr 2017

Catalyzed Synthesis Of Zinc Clays By Prebiotic Central Metabolites, Marcelo I. Guzman, Ruixin Zhou, Kaustuv Basu, Hyman Hartman, Christopher J. Matocha, S. Kelly Sears, Hajatollah Vali

Chemistry Faculty Publications

How primordial metabolic networks such as the reverse tricarboxylic acid (rTCA) cycle and clay mineral catalysts coevolved remains a mystery in the puzzle to understand the origin of life. While prebiotic reactions from the rTCA cycle were accomplished via photochemistry on semiconductor minerals, the synthesis of clays was demonstrated at low temperature and ambient pressure catalyzed by oxalate. Herein, the crystallization of clay minerals is catalyzed by succinate, an example of a photoproduced intermediate from central metabolism. The experiments connect the synthesis of sauconite, a model for clay minerals, to prebiotic photochemistry. We report the temperature, pH, and concentration dependence …


Photochemical Properties And Structure-Activity Relationships Of RuIi Complexes With Pyridylbenzazole Ligands As Promising Anticancer Agents, Dmytro Havrylyuk, David K. Heidary, Leona Nease, Sean Parkin, Edith C. Glazer Mar 2017

Photochemical Properties And Structure-Activity Relationships Of RuIi Complexes With Pyridylbenzazole Ligands As Promising Anticancer Agents, Dmytro Havrylyuk, David K. Heidary, Leona Nease, Sean Parkin, Edith C. Glazer

Chemistry Faculty Publications

Ruthenium complexes capable of light‐triggered cytotoxicity are appealing potential prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT). Two groups of (polypyridyl)RuII complexes with 2‐(2‐pyridyl)benzazole ligands were synthesized and investigated for their photochemical properties and anticancer activity to compare strained and unstrained systems that are likely to have different biological mechanisms of action. The structure–activity relationship was focused on the benzazole‐core bioisosterism and replacement of coligands in RuII complexes. Strained compounds rapidly ejected the 2‐(2‐pyridyl)benzazole ligand after light irradiation, and possessed strong toxicity in the HL‐60 cell line both under dark and light conditions. In contrast, unstrained Ru …


Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin Mar 2017

Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin

Chemical and Materials Engineering Faculty Publications

Mesoporous titania (mp-TiO2) has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to …


Exploring The Structure And Properties Of Nanomaterials Using Advanced Electron Microscopy Techniques, Yao-Jen Chang Jan 2017

Exploring The Structure And Properties Of Nanomaterials Using Advanced Electron Microscopy Techniques, Yao-Jen Chang

Theses and Dissertations--Chemistry

Nowadays people are relying on all kinds of electronic devices in their daily life. All these devices are getting smaller and lighter with longer battery life due to the improvement of nanotechnology and materials sciences. Electron microscopy (EM) plays a vital role in the evolution of materials characterization which shapes the technology in today’s life. In electron microscopy, electron beam is used as the illumination source instead of visible light used in traditional optical microscopy, the wavelength of an electron is about 105 times shorter than visible light. By taking this advantage, the resolving power and magnification are greatly …


Deconvolving The Steps To Control Morphology, Composition, And Structure, In The Synthesis Of High-Aspect-Ratio Metal Oxide Nanomaterials, Lei Yu Jan 2017

Deconvolving The Steps To Control Morphology, Composition, And Structure, In The Synthesis Of High-Aspect-Ratio Metal Oxide Nanomaterials, Lei Yu

Theses and Dissertations--Chemistry

Metal oxides are of interest not only because of their huge abundance but also for their many applications such as for electrocatalysts, gas sensors, diodes, solar cells and lithium ion batteries (LIBs). Nano-sized metal oxides are especially desirable since they have larger surface-to-volume ratios advantageous for catalytic properties, and can display size and shape confinement properties such as magnetism. Thus, it is very important to explore the synthetic methods for these materials. It is essential, therefore, to understand the reaction mechanisms to create these materials, both on the nanoscale, and in real-time, to have design control of materials with desired …


Heterogeneous Base Metal Catalyzed Oxidative Depolymerization Of Lignin And Lignin Model Compounds, John Adam Jennings Jan 2017

Heterogeneous Base Metal Catalyzed Oxidative Depolymerization Of Lignin And Lignin Model Compounds, John Adam Jennings

Theses and Dissertations--Chemistry

With the dwindling availability of petroleum, focus has shifted to renewable energy sources such as lignocellulosic biomass. Lignocellulosic biomass is composed of three main constituents, lignin, cellulose and hemicellulose. Due to the low value of cellulosic ethanol, utilization of the lignin component is necessary for the realization of an economically sustainable biorefinery model. Once depolymerized, lignin has the potential to replace petroleum-derived molecules used as bulk and specialty aromatic chemicals. Numerous lignin depolymerization strategies focus on cleavage of β-aryl ether linkages, usually at high temperatures and under reductive conditions.

Alternatively, selective benzylic oxidation strategies have recently been explored for …


Arsenic Removal With A Dithiol Ligand Supported On Magnetic Nanoparticles, John Hamilton Walrod Ii Jan 2017

Arsenic Removal With A Dithiol Ligand Supported On Magnetic Nanoparticles, John Hamilton Walrod Ii

Theses and Dissertations--Chemistry

Exposure to arsenic (As) in water, the ubiquitous toxin that poses adverse health risks to tens of millions, is the result of both anthropogenic and geochemical mobilization. Despite recent publicity and an increased public awareness, the dangers associated with arsenic exposure rank among the top priorities of public health agencies globally. Existing sequestration applications mainly include reductions and adsorption with zero-valent metals and their oxides. The performance of adsorption media is known to preferentially favor aqueous As(V) over As(III) due to the charge of the dissolved oxyanion. Magnetic nanoparticles (MNP) have been the focus of multidisciplinary research efforts for the …


Interactions Of Compounds Containing Group 12 And 16 Elements, Daniel Burriss Jan 2017

Interactions Of Compounds Containing Group 12 And 16 Elements, Daniel Burriss

Theses and Dissertations--Chemistry

The focus of this dissertation is on the interactions of compounds containing group 12 and 16 elements. This work is presented in three major parts. First, the interaction of the synthetic dithiol N,N’-bis(2-mercaptoethyl)isophthalamide), abbreviated BDTH2, with selenite. Second, the interaction of cysteine with Cd(II) and the biologically relevant Cd-Cysteine crystal structure. Third, the green synthesis of CdSe quantum dots (QDs).

The interaction of BDTH2 with selenite is different from the interactions with other metals and metalloids previously studied. Under ambient conditions, BDTH2 is oxidized to the disulfide, BDT(S-S), while selenite is reduced to elemental selenium. However, …