Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Chemistry

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws Aug 2022

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws

Doctoral Dissertations

Bottlebrush polymers are a class of highly branched polymers consisting of polymeric side chains that are densely grafted to a linear backbone. Their highly branched architecture results in surface enrichment across a broad range of materials. The goal of my research has been centered around the design of functional bottlebrush polymers and their use as surface active additives in blend films and coatings.

In the first chapter, we examine the segregation behavior of polystyrene bottlebrushes that are blended with linear polystyrene. We systematically vary the lengths of the bottlebrush backbone (Nb), side-chain (Nsc), and the linear matrix (Nm) in order …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


An Investigation Of Cross-Links On Crystallization And Degradation In A Novel, Photocross-Linkable Poly (Lactic Acid) System, Nicholas Baksh Feb 2021

An Investigation Of Cross-Links On Crystallization And Degradation In A Novel, Photocross-Linkable Poly (Lactic Acid) System, Nicholas Baksh

USF Tampa Graduate Theses and Dissertations

Polymeric molecular structure consists of repeating units bonded together. Mechanicalproperties can be altered without affecting chemical makeup by altering the number of these units. Small molecules can be introduced and/or polymers can be modified to form bonds between molecular chains. Cross-linking, as this is called, also introduces mechanical variation with minimal effects on chemical composition. Lastly, polymer chains reorient themselves in response to intermolecular forces. This temperature dependent response is known as crystallization. Although chemistry is unaltered, mechanical properties can depend highly on the percent of the sample that is crystallized.

Cross-linking is known to enhance the mechanical properties of …


Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari Jan 2021

Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari

Dissertations, Master's Theses and Master's Reports

While hardware innovations in micro/nano electronics and photonics are heavily patented, the rise of the open-source movement has significantly shifted focus to the importance of obtaining low-cost, functional and easily modifiable research equipment. This thesis provides a foundation of open source development of equipment to aid in the micro/nano electronics and photonics fields.

First, the massive acceptance of the open source Arduino microcontroller has aided in the development of control systems with a wide variety of uses. Here it is used for the development of an open-source dual axis gimbal system. This system is used to characterize optoelectronic properties of …


Computational Materials Science And Engineering: Model Development And Case Study, Yihan Xu Aug 2020

Computational Materials Science And Engineering: Model Development And Case Study, Yihan Xu

Theses and Dissertations

This study presents three tailored models for popular problems in energy storage and biological materials which demonstrate the application of computational materials science in material system development in these fields. The modeling methods can be extended for solving similar practical problems and applications.

In the first application, the thermo-mechanical stress concentrated region in planar sodium sulfur (NaS) cells with large diameter and different container materials has been estimated as well as the shear and normal stresses in these regions have been quantified using finite-element analysis (FEA) computation technique. It is demonstrated that the primary failure mechanism in the planar NaS …


Filtration Apparatus Design For Oil-Water Separation Using Membranes And Sponges, Alec Jerger Jan 2020

Filtration Apparatus Design For Oil-Water Separation Using Membranes And Sponges, Alec Jerger

Williams Honors College, Honors Research Projects

It can be difficult to separate water and oil emulsions through traditional filtration. Therefore, investigations of filtering using thermo-responsive (TR) polymers, in this case poly(vinyl methyl ether) (PVME), was conducted. It’s hypothesized that below its lower critical solution temperature (LCST), PVME has an affinity for water while oil substances do not. Above the LCST the opposite will be true. To verify this hypothesis, iterations of filtration designs were created to provide optimum control over the parameters to measure flow. The final optimized experimental apparatus was a Chromaflex glass column which was air tight and controlled all parameters besides fluid flow. …


Towards Completely Automated Glycan Synthesis, Matteo Panza Nov 2019

Towards Completely Automated Glycan Synthesis, Matteo Panza

Dissertations

Carbohydrates are ubiquitous both in nature as biologically active compounds and in medicine as pharmaceuticals. Although there has been continued interest in the synthesis of carbohydrates, chemical methods require specialized knowledge and hence remain cumbersome. The need for development of rapid, efficient and operationally simple procedures has come to the fore. This dissertation focuses on the development of a fully automated platform that will enable both experts and non-specialists to perform the synthesis of glycans. Existing automated methods for the synthesis of oligosaccharides are highly sophisticated, operationally complex, and require significant user know-how. By contrast, high performance liquid chromatography (HPLC) …


Progress Toward Durable Icephobic Materials, Matthew J. Coady Oct 2019

Progress Toward Durable Icephobic Materials, Matthew J. Coady

Electronic Thesis and Dissertation Repository

Ice accumulation is a major engineering challenge in many fields including aerospace, power generation, transportation, and infrastructure. A variety of solutions are being researched to address this challenge. Perhaps the most promising method of combating ice accumulation is by applying coatings with low values of interfacial ice adhesion strength, τice. Icephobic materials are those with ice adhesion below 100 kPa, and it has been shown that passive delamination can occur on surfaces with τice below 20 kPa. While various low adhesion surfaces have been prepared, durability concerns pervade applications where surfaces experience repeated icing or freeze-thaw cycles, …


Active Polymeric Materials For 3d Shaping And Sensing, Adebola Oyefusi May 2019

Active Polymeric Materials For 3d Shaping And Sensing, Adebola Oyefusi

Theses and Dissertations

Part I: Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding

Origami- and kirigami-based design principles have recently received strong interest from the scientific and engineering communities because they offer fresh approaches to engineering of structural hierarchy and adaptive functions in materials, which could lead to many promising applications. Herein, we present a reprogrammable 3D chemical shaping strategy for creating a wide variety of stable complex origami and kirigami structures autonomously. This strategy relies on a reverse patterning method that encodes prescribed 3D geometric information as a spatial pattern of the unlocked phase (dispersed phase) in the locked phase …


Multidimensional Mass Spectrometry Of Chemonic™ Ccg-6 Nonionic Surfactant With Separation By Polarity And Shape, Charles Johnson Jan 2019

Multidimensional Mass Spectrometry Of Chemonic™ Ccg-6 Nonionic Surfactant With Separation By Polarity And Shape, Charles Johnson

Williams Honors College, Honors Research Projects

Chemonic™ CCG-6 surfactant is a water-soluble poly(ethylene glycol) (PEG) conjugated alkyl glyceride emollient. This surfactant exists as a complex mixture of a glycerol cores conjugated with poly(ethylene glycol) branches (PEGylation) that were partially esterified with caprylic (C8) and capric (C10) acids. These may be esterified on one, two, or all three arms of the glyceride. The architecture of the structures in this mixture was studied using multidimensional mass spectrometry (MS). Mass spectrometry was interfaced with ultra-performance liquid chromatography (UPLC) and ion mobility (IM) separation. The mixture was separated by reversed-phase LC, oligomers of the star-branched polymer were separated according to …


Plant Stimuli-Responsive Biodegradable Polymers For The Use In Timed Release Fertilizer Coatings, Spencer Heuchan Aug 2018

Plant Stimuli-Responsive Biodegradable Polymers For The Use In Timed Release Fertilizer Coatings, Spencer Heuchan

Electronic Thesis and Dissertation Repository

The use of nitrogen-based fertilizers continues to accelerate with human population growth and increases in global food requirements. Enhanced efficiency fertilizers (EEFs) have been developed to improve the synchronization between nutrient supply and crop nutrient demand. However, many of the current controlled release fertilizers are coated with non-degradable polymers that contribute to accumulation of microplastics within ecosystems. This thesis describes research towards the development of a new class of fertilizer coatings using a self-immolative polymer known as poly (ethyl glyoxylate) (PEtG). PEtG itself does not have suitable properties to produce a viable coating but once blended with another degradable polyester …


Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen Aug 2017

Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen

Electronic Theses and Dissertations

The research here deals with the conversion of 5-hydroxymethylfurfural (HMF) into a tunable polymer. HMF is a known derivative that can be acquired from biomass via hydrolysis of cellulose followed by isomerization and finally selective dehydration. The process considered here is being developed to create tunable polymers from HMF and involves several different steps, three of which are covered here. The first step, an etherification, is the reaction of HMF with an alcohol. This step is significant because in this step the R-group from the alcohol is added to HMF and the branching portion formed is carried over to the …


Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu May 2017

Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu

Doctoral Dissertations

Carbon nanotubes (CNTs) exhibit a variety of exceptional properties, especially their ultrahigh tensile strength on the order of 100GPa show promise for constituting the next-generation carbon fiber. However, challenges remain to translate these properties into useful technology, primarily due to the sliding of the tubes past one another under tensile loading. The work presented in this dissertation is focused on enhancing the interaction between the CNTs and their bundles in a macro-assembly, in order to improve the tensile properties of the material.

Applying inter-tube crosslinks has been predicted to significantly enhance the stress transfer between the CNT components. We developed …


Synthesis Of Acceptors For Use In Donor-Acceptor Copolymers And Characterization Of These Polymers, William D. Walker May 2016

Synthesis Of Acceptors For Use In Donor-Acceptor Copolymers And Characterization Of These Polymers, William D. Walker

Honors Theses

In this thesis, a selenium-derivatized acceptor was synthesized to examine the heavy atom effects of selenium on the position of the frontier molecular orbitals (HOMO/LUMO band gap) as opposed to sulfur in a donor-acceptor copolymer for use in light harvesting and detection applications. Over the course of this research, standard operating protocols for ultraviolet-visible (UV-Vis-NIR) and Fourier transform infrared (FT-IR) spectroscopies, as well as cyclic voltammetry (CV) characterization techniques were established. Once synthesized, the polymers were characterized through use of the established characterization protocols. The selenium-derivatized polymer exhibited a bathochromic shift compared to the sulfur analogue, with a solid-state absorption …


Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli Aug 2015

Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli

Doctoral Dissertations

This dissertation describes the synthesis of photo-crosslinkable copolymers and their utilization for the fabrication and testing of tunable and responsive one-dimensional (1D) photonic multilayers. Photonic multilayers exhibit structural color due to the interference of incident light at layer interfaces, providing a convenient route towards optically responsive materials that do not rely on potentially light- or oxygen-sensitive chromophore-containing pigments and dyes. A fabrication technique based on sequential spin-coating and crosslinking of photo-crosslinkable polymers is used to assemble tunable and responsive photonic multilayers. Chapter One introduces the fundamental underlying principles of 1D photonic structures and explores their importance in a variety of …


Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell Aug 2014

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell

Doctoral Dissertations

Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 60 years. Within this theory, a parameter (χ) [chi] was included to quantify the enthalpic energy of dispersion between distinct components. Thin film self-assembly of polymer melts and block copolymers depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of the individual components of the system. However, Small-Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a roughly parabolic concentration dependency for …


Investigation Of Energy Alignment Models At Polymer Interfaces, Wenfeng Wang May 2014

Investigation Of Energy Alignment Models At Polymer Interfaces, Wenfeng Wang

USF Tampa Graduate Theses and Dissertations

The presented study investigated the Induced Density of Interface States (IDIS) model at different polymer interfaces by using photoemission spectroscopy in combination with electrospray deposition.

In recent years, organic electronics have attracted considerable attention due to their advantages of low-cost and easy-fabrication. The performance of such devices crucially depends on the energy barrier that controls the interface charge transfer. A significant effort has been made to explore the mechanisms that determine the direction and magnitude of charge transfer barriers in these devices. As a result of this effort, the IDIS model was developed to predict the energy alignment at metal/organic …


Formulation Development Of A Polymer-Drug Matrix With A Controlled Release Profile For The Treatment Of Glaucoma, Eric W. Tsoi Dec 2013

Formulation Development Of A Polymer-Drug Matrix With A Controlled Release Profile For The Treatment Of Glaucoma, Eric W. Tsoi

Master's Theses

Glaucoma is the leading cause of blindness in the United States accounting for 9-12% of all cases of blindness. Currently, the front line treatment for glaucoma are prostaglandins that may have to be taken up to several times a day. Even with proper treatment, roughly 11% of the patients using the treatment are non-compliant and lose their vision. In this project, ForSight Laboratories has developed a pharmaceutical drug delivering implant with the capability of sustaining long-term release of a prostaglandin as a new way to treat the condition. This project reports the product development of a polymer drug matrix with …


Development Of Quantitative Ft- Ir Methods For Analyzing The Cure Kinetics Of Epoxy Resins, Sang Ha Son Oct 2013

Development Of Quantitative Ft- Ir Methods For Analyzing The Cure Kinetics Of Epoxy Resins, Sang Ha Son

Open Access Dissertations

Epoxy thermosets are important engineering materials with applications in coating, adhesives, packaging and as structural components in a variety of advanced engineering products. The ultimate performance of polymer critically depends upon the details of the cure chemistry used to produce the thermoset. In order to better understand and monitor the cure chemistry, quantitative analysis of the FT-IR response has been developed for describing the epoxy-amine curing reaction as well as monitoring the hydrogen bonding that occurs in these systems The FT-IR analysis includes (i) quantitative deconvolution of complex peaks into individual spectral contributions, (ii) peak identification via DFT analysis and …