Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

Theses/Dissertations

2014

Institution
Keyword
Publication

Articles 1 - 30 of 57

Full-Text Articles in Chemistry

Production And Applications Of Formaldehyde-Free Phenolic Resins Using 5-Hydroxymethylfurfural Derived From Glucose In-Situ, Yongsheng Zhang Dec 2014

Production And Applications Of Formaldehyde-Free Phenolic Resins Using 5-Hydroxymethylfurfural Derived From Glucose In-Situ, Yongsheng Zhang

Electronic Thesis and Dissertation Repository

The phenol-formaldehyde (PF) resin manufacturing industry is facing a growing challenge with respect to concerns over human health, due to the use of carcinogenic formaldehyde and sustainability due to the use of petroleum-based phenol in PF resin manufacture. Glucose and its derivative, 5-hydroxymethylfurfural (5-HMF), have proven to be potential substitutes for formaldehyde in the synthesis of phenolic novolac resins.

This thesis investigated a number of glucose and 5-HMF resin systems including the curing of phenol-glucose novolac resin (PG) with a bis-phenol-A type epoxy. The curing process was modeled according to the Sestak-Berggren equation (S, B) using Málek methods. This was …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo Dec 2014

Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo

Electronic Thesis and Dissertation Repository

The present study focuses on developing a predictive methodology to scale-up a slurry annular photoreactor using a TiO2 Degussa P25 from the bench-scale to a pilot-plant scale. The bench-scale photoreactor is a Photo-CREC-Water II, a 2.65 L internally-irradiated slurry annular photocatalytic reactor. The pilot-plant scale photoreactor is a Photo-CREC Water Solar Simulator, a 9.8 L pilot-plant photoreactor, externally irradiated by eight lamps.

The adopted methodology allows the independent validation of radiative and kinetic models avoiding cross-correlation issues. The proposed approach involves two Monte Carlo methods, to model the Radiative Transfer Equation (RTE) inside each photoreactor. With this end, a …


Synthesis And Thermodynamic Analysis Of Volatile Beta-Diketone Complexes Of Select Lanthanides Via Gas-Phase Separations, Daniel Hanson Dec 2014

Synthesis And Thermodynamic Analysis Of Volatile Beta-Diketone Complexes Of Select Lanthanides Via Gas-Phase Separations, Daniel Hanson

Doctoral Dissertations

Rapid separation techniques for fission and activation products have long been desired to supplant the slow solution-based methodologies currently used. In this work, rare earth elements were derivatized with β [beta]-diketones to synthesize rare earth complexes with high volatility suitable for gas-phase separations. Rare earth elements samarium and dysprosium were combined with hfac (1,1,1,5,5,5-hexafluoro-2,4-pentadione) and fod (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione) and analyzed using a gas-phase separation technique. Rare earth elements praseodymium and europium were combined with dpm (2,2,6,6-tetra-methyl-3,5-heptanedione) and similarly analyzed. Employing the data from the separations, the entropy (Δ [delta] S) and enthalpy (Δ [delta] H) of adsorption were evaluated mathematically based …


Designing Magnetically Responsive Ultrafiltration Membranes, Robert William Dong Dec 2014

Designing Magnetically Responsive Ultrafiltration Membranes, Robert William Dong

Graduate Theses and Dissertations

Ultrafiltration (UF) membranes developed out of a need for protein separation processes. Currently, they are used in a variety of industries ranging from food manufacturing to pharmaceuticals for two main purposes: concentration, separation, and buffer exchange. UF membrane processes in product streams undergo frequent use and like all membrane processes experience a gradual decline in performance due to fouling phenomena both irreversible and reversible. Ultimately, performance declines to a point where the UF membrane needs to be replaced. Frequent replacement of UF membranes is detrimental to major industries that require high product throughput using UF processes. Thus, it is important …


Toward Understanding The Thermodynamics And Mechanisms Of Actinide Sorption Reactions, Shanna Estes Dec 2014

Toward Understanding The Thermodynamics And Mechanisms Of Actinide Sorption Reactions, Shanna Estes

All Dissertations

The environmental fate of actinides is greatly influenced by interfacial reactions, including sorption onto solid surfaces. Because changes in the primary hydration sphere of the actinide are expected to greatly influence the thermodynamics (i.e., reaction enthalpy and entropy) of these reactions, examining actinide sorption thermodynamics may provide insight into actinide sorption mechanisms. Additionally, examining actinide sorption thermodynamics may enhance the ability to model or predict these reactions in environmental or engineered systems where variable or elevated temperatures are expected. However, few researchers have studied actinide sorption thermodynamics. Therefore, this research examined the thermodynamics of Eu(III) (a trivalent actinide analog), Th(IV), …


Experimental Evidence For Colloid-Facilitated Transport Of Plutonium, Hilary Emerson Dec 2014

Experimental Evidence For Colloid-Facilitated Transport Of Plutonium, Hilary Emerson

All Dissertations

Colloid-facilitated transport of the actinides has been observed previously in the field on the kilometer scale. The objective of this work is to investigate the mechanisms of colloid-facilitated transport with controlled settings and conditions. The experimental work in this dissertation investigates transport of a ternary complex with iron oxide colloids, organic ligands and actinides in the presence of quartz or a natural sandy soil as well as simplified systems building up to the ternary complexes. The first three papers investigate the following: (1) unsaturated transport of iron oxide colloids in a natural sandy soil lysimeter with and without natural organic …


Utilization Of Aqueous Raft Prepared Copolymers To Improve Anticancer Drug Efficacy, Andrew Christopher Holley Dec 2014

Utilization Of Aqueous Raft Prepared Copolymers To Improve Anticancer Drug Efficacy, Andrew Christopher Holley

Dissertations

The advent of controlled radical polymerization (CRP) techniques, along with advancements in facile conjugation chemistry, now allow synthetic tailoring of precise, polymeric architectures necessary for drug/gene delivery. Reversible addition- fragmentation chain transfer (RAFT) polymerization and its aqueous counterpart (aRAFT) afford quantitative control over key synthetic parameters including block length, microstructure, and placement of structo-pendent and structo-terminal functionality for conjugation of active agents and targeting moieties. The relevance of water-soluble and amphiphilic (co)polymers synthesized by RAFT for in vitro delivery of therapeutics in biological fluids is an especially attractive feature. In many cases, polymerization, binding, conjugation, …


Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley Dec 2014

Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley

UNLV Theses, Dissertations, Professional Papers, and Capstones

Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials.

For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These …


Diffusion And Adsorption Coefficients Of Aromatic Hydrocarbons In Gas Chromatography Capillary Columns, Gabriela Navarro Tovar Nov 2014

Diffusion And Adsorption Coefficients Of Aromatic Hydrocarbons In Gas Chromatography Capillary Columns, Gabriela Navarro Tovar

Electronic Thesis and Dissertation Repository

This study focuses on a mathematical description of aromatic species elution peaks from a gas chromatographic BPX5 capillary column. Using the chromatographic peaks, statistical moments are calculated for toluene, naphthalene, phenol and 2-naphthol. This thesis reports two modelling approaches involving laminar gas flow, distribution coefficients (Ks) and diffusion coefficients in the stationary phase (Ds).

Firstly, a model with equilibrium adsorption is considered to describe symmetric peaks for toluene and naphthalene. Moreover, a model with non-equilibrium adsorption is proposed to describe asymmetric peaks of phenol and 2-napthol. In addition to the Ks and D …


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Nov 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction. Hydrophilic MNPs were shown to drive the self-assembly of BCPs …


Engineering Surface Functionality Of Nanoparticles For Biological Applications, Yi-Cheun Yeh Nov 2014

Engineering Surface Functionality Of Nanoparticles For Biological Applications, Yi-Cheun Yeh

Doctoral Dissertations

Engineering the surface functionality of nanomaterials is the key to investigate the interactions between nanomaterials and biomolecules for potent biological applications such as therapy, imaging and diagnostics. My research has been orientted to engineer both of the surface monolayers and core materials to fabricate surface-functionalized nanomaterials through the synergistic multidisciplinary approach that combine organic chemistry, materials science and biology. This thesis illustrates the design and synthesis of the surface-funcitonalized quantum dots (QDs) and gold nanoparticles (AuNPs) for the fundamental studies and practical applications. For QDs, A new class of cationic QDs with quaternary ammonium derivatives was synthesized to provide permanent …


Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph Nov 2014

Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph

Doctoral Dissertations

The ability to define and control the topography of a surface has been studied extensively due to its importance in a wide variety of applications. The control of a non-planar topography would be very valuable since a number of structures that are pervasive in artificial applications (e.g. fibers, lenses) are curved interfaces. This potential of enabling applications that incorporate non-planar geometries was the motivation for this thesis. The first study of this thesis comprises the study of patterning the circumference of micrometer sized fibers. Specifically, a unique technique was described to pattern the fiber with a periodic array of colloids. …


The Discovery And Study Of Fluvirucin B1 Polyketide Synthase, Tsung-Yi Lin Nov 2014

The Discovery And Study Of Fluvirucin B1 Polyketide Synthase, Tsung-Yi Lin

Doctoral Dissertations

Rapidly decreasing numbers of viable therapeutic leads in the pharmaceutical pipeline demand new, sustainable methods for improved drug discovery and development. Despite vast improvements in de novo drug design and target recognition, Nature remains the richest source of small molecule therapeutics. Among many natural products, polyketides are not only the most promising ones for developing new antibiotic leads, but also exhibit unusually high therapeutic value ranging from clinical use as anticancer, antiviral, and immunosuppressant drugs. Modular polyketide synthases (PKSs) are dedicated nano-machinery that can be manipulated to produce a structurally diverse library for drug discovery programs. The ability to manipulate …


High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min Oct 2014

High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min

Open Access Theses

The mobility of Two-dimensional Electron Gas in AlGaAs/GaAs heterostructures that are grown in the Molecular Beam Epitaxy (MBE) can be increased by purification of the gallium used to grow the films. To attain 200 million cm2/Vs mobility, the impurity concentration of gallium should be reduced to below 1 ppb. The commercial 7N (99.99999%) gallium with 100 ppb total impurity is currently used in the MBE at Purdue University and is being purified by zone refining. To evaluate the commercial 7N gallium and establish the methodology for the impurity measurement after zone refining, germanium, iron, and zinc in 6N and 7N …


Identifying Conditions To Optimize Lactic Acid Production From Food Waste, Raymond M. Redcorn Oct 2014

Identifying Conditions To Optimize Lactic Acid Production From Food Waste, Raymond M. Redcorn

Open Access Theses

There is an increased demand for lactic acid for the production of biopolymers and to aid nutrient removal in wastewater treatment. Food waste offers a source of soluble sugars to produce lactic acid, which does not increase land demand, but digestion conditions have yet to be optimized when co-digested with primary sludge. Food waste was collected from cafeteria waste bins, homogenized and seeded with primary sludge. A Box Behnken Response surface design was used to optimize lactic acid production based on pH, temperature, loading rate, and retention time. Subsequent experiments verified and refined those conditions to optimize for both yield …


Impact Of Nanostructure On Polymer-Based Nonvolatile Memory Devices, Seung Hyun Sung Oct 2014

Impact Of Nanostructure On Polymer-Based Nonvolatile Memory Devices, Seung Hyun Sung

Open Access Theses

Memory functionality is essential for many high-end electronic applications (e.g. , smart phones, personal computers). Particularly, organic nonvolatile memory devices based on polymer ferroelectric materials are a promising approach toward the development of low-cost memory due to the ease of processing and flexibility associated with the device. Here, we will focus on a memory device with a two-component active layer and a diode structure. This ferroelectric diode (FeD) has a nanostructured active layer, composed of ferroelectric and semiconducting polymers, and it can provide easy access to high-performance polymer-based memory devices. In order to create these nanostructured active layers, we …


Synthesis, Fabrication And Characterization Of Magnetic And Dielectric Nanoparticles And Nanocomposite Films, Xiaohua Liu Oct 2014

Synthesis, Fabrication And Characterization Of Magnetic And Dielectric Nanoparticles And Nanocomposite Films, Xiaohua Liu

Dissertations, Theses, and Capstone Projects

Materials science is an interdisciplinary field investigating the structure-property relationship in solid-state materials scientifically and technologically. Nanoscience is concerned with the distinctive properties that matter exhibits when confined to physical dimensions on the order of 10-9 meters. At these length scales, behaviors of particles or elaborate structures are often governed by the rules of quantum mechanics in addition to the physical properties associated with the bulk material.

The work reported here seeks to employ nanocystals, binary nanocomposites and thin films of materials, to build versatile, functional systems and devices. With a focus on dielectric, ferroelectric, and magnetoelectric performance, a …


Synthesis And Evaluation Of Sensitizer Drug Photorelease Chemistry: Micro-Optic Method Applied To Singlet Oxygen Generation And Drug Delivery, Goutam Ghosh Oct 2014

Synthesis And Evaluation Of Sensitizer Drug Photorelease Chemistry: Micro-Optic Method Applied To Singlet Oxygen Generation And Drug Delivery, Goutam Ghosh

Dissertations, Theses, and Capstone Projects

This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) …


Molecular Engineering Strategies For The Design And Synthesis Of New Organic Photovoltaic Materials, Paul J. Homnick Aug 2014

Molecular Engineering Strategies For The Design And Synthesis Of New Organic Photovoltaic Materials, Paul J. Homnick

Doctoral Dissertations

Dramatic improvements in organic photovoltaic device efficiency can be obtained by optimizing spectral absorbance and frontier molecular orbital (FMO) energies, increasing solid state exciton/charge mobility, and utilizing p-/n-type nanoarchitecture. Combining all of these properties into a new material presents a considerable synthetic challenge because potential commercial applications require materials that are high-performance and inexpensive. Thus, it is advantageous to design new materials using a versatile, modular synthetic approach that allows each design criterion to be engineered individually, in a synthetically efficient manner. Several strategies were successfully pursued using simple interchangeable electron donor and acceptor components as functional modules, which …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …


Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell Aug 2014

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell

Doctoral Dissertations

Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 60 years. Within this theory, a parameter (χ) [chi] was included to quantify the enthalpic energy of dispersion between distinct components. Thin film self-assembly of polymer melts and block copolymers depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of the individual components of the system. However, Small-Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a roughly parabolic concentration dependency for …


Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel Aug 2014

Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel

Graduate Theses and Dissertations

The morphology and composition of a nanoparticle (NP) play a critical role in determining the NP's properties and function. To date, researchers have created a myriad of NPs of different shapes, sizes, and compositions with interesting attributes and applications ushering a revolution in medicine, electronics, microscopy, and microfluidics.

In this study, gold (Au) nanosphere dimers (NSDs) have been synthesized through a novel self-assembly method. These particles were created from Au NPs mono-dispersed in aqueous solution via a process of centrifugation and capping agent replacement. Au NSDs consist of two Au NPs combined together with minimal gaps between them. Optical spectral …


Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin Aug 2014

Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin

Doctoral Dissertations

Room temperature ionic liquids are an important class of materials due to their chemical tunability and numerous advantageous physicochemical properties. As a result, ionic liquids are currently being investigated for use in a wide array of chemical and electrochemical applications. Despite their great potential, however, the relationship between the chemical structure and physicochemical properties of ionic liquids is not well understood.

To this end, this dissertation presents experimental studies of the reorientational structural dynamics and charge transport properties of a variety of room temperature ionic liquids using quasielastic light scattering spectroscopy and broadband dielectric spectroscopy.

Studies of a series of …


Correlating Molecular Architecture Of A Radical Polymer Based Copolymer With Its Electrical Transport Properties, Holly Chan Jul 2014

Correlating Molecular Architecture Of A Radical Polymer Based Copolymer With Its Electrical Transport Properties, Holly Chan

Open Access Theses

The design and synthesis of electrically-conductive macromolecules can lead to significant improvements in the performance of polymer-based energy conversion devices (e.g., thermoelectric devices). For these organic electronic devices, conjugated polymers have dominated the area of conductive polymers; however, these materials are usually synthesized using conditions that lead to poorly-defined polymers. Furthermore, in these increasingly-standard polymers, the charge transport ability of the polymer thin films is largely affected by the degree of crystallinity, which is a difficult property to control in a reproducible fashion. Therefore, we seek to explore a new class of amorphous, non-conjugated polymers containing a stable radical …


Physical And Chemical Attributes Of A Genetically Modified Fruit Pectin, Carl Patrick Littrell Jul 2014

Physical And Chemical Attributes Of A Genetically Modified Fruit Pectin, Carl Patrick Littrell

Open Access Theses

Pectin is an important polymer used in the food industry as a thickening and gelling agent. Though pectin is ubiquitous in plants, chemical and structural differences among pectin molecules prevent most from being viable for industrial use. Enzymes found naturally in fruit cell walls during the ripening process impair many desirable attributes of fruit pectins, rendering them unsuitable for industrial applications. Pectin methylesterase (PME) is one such enzyme whose expression can be altered during ripening through the use of recombinant genetic engineering. Reduction in levels of PME results in increased degree of methylation and molecular size of pectin, greatly increasing …


Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash Jul 2014

Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash

Open Access Theses

Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, …


Fundamental Studies On Copper Zeolites For Catalytic No X Abatement, Anuj Arun Verma Jul 2014

Fundamental Studies On Copper Zeolites For Catalytic No X Abatement, Anuj Arun Verma

Open Access Dissertations

Stringent regulations in mobile NOx emissions have resulted in the development of Standard Selective Catalytic Reduction (SCR) as the dominant NOx abatement technology in lean burn diesel engines. Standard SCR is a reaction of nitric oxide (NO) with ammonia (NH3), in the presence of oxygen (O 2) to form nitrogen (N2) and water (H2O). Copper containing zeolites show commercially viable SCR performance. Cu-SSZ-13 (CHA framework), a member of this family, is a preferred catalyst for SCR applications because it shows exceptional hydrothermal stability in addition to commercially viable SCR performance. Our work focuses …


Synthesis And Characterization Of Crystalline Iron Nanoparticles From Zerovalent Iron Sandwich Complexes, Anh Tue Nguyen Jul 2014

Synthesis And Characterization Of Crystalline Iron Nanoparticles From Zerovalent Iron Sandwich Complexes, Anh Tue Nguyen

Open Access Theses

In this project we present a systematic study on the synthesis of crystalline iron nanocubes by thermal decomposition of an iron sandwich complex, ( π-C5H5)Fe0(π-C 6H7), in the presence of oleylamine and oleylamine.HCl as surfactants and n-decane as a solvent. The presence of oleylamine.HCl is essential for the reproducible formation of crystalline iron cores.^ Reaction parameters such as temperature, surfactant concentration, effect of counterion, and organoiron reagent structure were investigated in order to obtain iron nanoparticles with uniform size and shape. The nanoparticles, which were characterized by …


Synthesis, Characterization And Mechanistic Studies Of Biomolecules@Mesomofs, Yao Chen Jun 2014

Synthesis, Characterization And Mechanistic Studies Of Biomolecules@Mesomofs, Yao Chen

USF Tampa Graduate Theses and Dissertations

Encapsulation of biomolecules is of great interest to research advances related to biology, physiology, immunology, and biochemistry, as well as industrial and biomedical applications such as drug delivery, biocatalysis, biofuel, food and cosmetics. Encapsulation provides functional characteristics that are not fulfilled by free biomolecules and stabilizes the fragile biomolecules. In terms of biocatalysis, solid support can often enhance the stability of enzymes, as well as facilitate separation and recovery for reuse while maintaining activity and selectivity. Various kinds of materials have been used for encapsulation of biomolecules, among which, porous materials are an important group. Metal-organic frameworks (MOFs) have attracted …