Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Anticancer, Biophysical And Computational Investigations Of Half-Sandwich Ruthenium(Ii) Thiosemicarbazone Complexes: The Effect Of Arene Versus Thiacrown Face-Cap, Floyd A. Beckford, Alyssa Stott, P. Canisius Mbarushimana, Marc-Andre Leblanc, Kinsey Hall, Samantha Smith, Jimmie L. Bullock, Dennis J. Houghton, Alvin A. Holder, Nikolay Gerasimchuk, Antonio Gonzalez-Sarrías Jan 2016

Anticancer, Biophysical And Computational Investigations Of Half-Sandwich Ruthenium(Ii) Thiosemicarbazone Complexes: The Effect Of Arene Versus Thiacrown Face-Cap, Floyd A. Beckford, Alyssa Stott, P. Canisius Mbarushimana, Marc-Andre Leblanc, Kinsey Hall, Samantha Smith, Jimmie L. Bullock, Dennis J. Houghton, Alvin A. Holder, Nikolay Gerasimchuk, Antonio Gonzalez-Sarrías

Chemistry & Biochemistry Faculty Publications

A series of half-sandwich ruthenium complexes, two containing an arene face-cap and the other a thiacrown ether face-cap were synthesized to investigate the necessity of the arene for anticancer activity in this class of compounds. The complexes are formulated as [(h6-p-cymene)Ru(dmabTSC)Cl]PF6, [(h6-benzene)Ru(dmabTSC)Cl]PF6 (arene complexes), and [([9]aneS3(dmabTSC)Cl]PF6 (dmabTSC = dimethylaminobenzaldehye thiosemicarbazone). It was observed that none of the complexes showed good anticancer activity in vitro against HCT-116 and Caco-2 (colon adenocarcinoma) cells. All three complexes can bind strongly to calf-thymus DNA with binding constants on the order of 10 …


The Role Of Microbial Exopolymers In Determining The Fate Of Oil And Chemical Dispersants In The Ocean, Antonietta Quigg, Uta Passow, Wei-Chun Chin, Chen Xu, Shawn Doyle, Laura Bretherton, Manoj Kamalanathan, Alicia K. Williams, Jason B. Sylvan, Zoe V. Finkel, Anthony H. Knap, Kathleen A. Schwehr, Saijin Zhang, Luni Sun, Terry L. Wade, Wassim Obeid, Patrick G. Hatcher, Peter H. Santschi Jan 2016

The Role Of Microbial Exopolymers In Determining The Fate Of Oil And Chemical Dispersants In The Ocean, Antonietta Quigg, Uta Passow, Wei-Chun Chin, Chen Xu, Shawn Doyle, Laura Bretherton, Manoj Kamalanathan, Alicia K. Williams, Jason B. Sylvan, Zoe V. Finkel, Anthony H. Knap, Kathleen A. Schwehr, Saijin Zhang, Luni Sun, Terry L. Wade, Wassim Obeid, Patrick G. Hatcher, Peter H. Santschi

Chemistry & Biochemistry Faculty Publications

The production of extracellular polymeric substances (EPS) by planktonic microbes can influence the fate of oil and chemical dispersants in the ocean through emulsification, degradation, dispersion, aggregation, and/or sedimentation. In turn, microbial community structure and function, including the production and character of EPS, is influenced by the concentration and chemical composition of oil and chemical dispersants. For example, the production of marine oil snow and its sedimentation and flocculent accumulation to the seafloor were observed on an expansive scale after the Deepwater Horizon oil spill in the Northern Gulf of Mexico in 2010, but little is known about the underlying …


Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day Jan 2016

Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day

Chemistry & Biochemistry Faculty Publications

Background

Application of modern biomass pyrolysis methods for production of biofuels and biochar is potentially a significant approach to enable global carbon capture and sequestration. To realize this potential, it is essential to develop methods that produce biochar with the characteristics needed for effective soil amendment.

Methods

Biochar materials were produced from peanut hulls and pine wood with different pyrolysis conditions, then characterized by cation exchange (CEC) capacity assays, nitrogen adsorption–desorption isotherm measurements, micro/nanostructural imaging, infrared spectra and elemental analyses.

Results

Under a standard assay condition of pH 8.5, the CEC values of the peanut hull-derived biochar materials, ranging from …