Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Old Dominion University

Nanostructures

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Observation Of Reduced Thermal Conductivity In A Metal-Organic Framework Due To The Presence Of Adsorbates, Hasan Babaei, Mallory E. Decoster, Minyoung Jeong, Zeinab M. Hassan, Timur Islamoglu, Helmut Baumgart, Alan J.H. Mcgaughey, Engelbert Redel, Omar K. Farha, Patrick E. Hopkins, Jonathan A. Malen, Christopher E. Wilmer Jan 2020

Observation Of Reduced Thermal Conductivity In A Metal-Organic Framework Due To The Presence Of Adsorbates, Hasan Babaei, Mallory E. Decoster, Minyoung Jeong, Zeinab M. Hassan, Timur Islamoglu, Helmut Baumgart, Alan J.H. Mcgaughey, Engelbert Redel, Omar K. Farha, Patrick E. Hopkins, Jonathan A. Malen, Christopher E. Wilmer

Electrical & Computer Engineering Faculty Publications

Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 – 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, …


Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach Jan 2005

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV∕cm), ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the …