Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach Jan 2005

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV∕cm), ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the …


Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Melting And Solidification Study Of Indium And Bismuth Nanocrystals Using Reflection High-Energy Electron Diffraction, Mohamed K. Zayed Jan 2005

Melting And Solidification Study Of Indium And Bismuth Nanocrystals Using Reflection High-Energy Electron Diffraction, Mohamed K. Zayed

Electrical & Computer Engineering Theses & Dissertations

As technology begins to utilize nanocrystals for many chemical, biological, medical, electrical, and optoelectrical applications, there is a growing need for an understanding of their fundamental properties. The study of melting and solidification of nanocrystals is of interest to fundamental understanding of the effect of reduced size and crystal shape on the solid-liquid phase transition. Melting and solidification of as-deposited and recrystallized indium and bismuth nanocrystals were studied using reflection high-energy electron diffraction (RHEED). The nanocrystals were thermally deposited on highly oriented 002-graphite substrate at different deposition temperatures. The growth dynamics of the nanocrystals was studied using in situ RHEED …