Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Turning Density Functional Theory Calculations Into Molecular Mechanics Simulations : Establishing The Fluctuating Density Model For Rna Nucleobases, Christopher A. Myers Dec 2022

Turning Density Functional Theory Calculations Into Molecular Mechanics Simulations : Establishing The Fluctuating Density Model For Rna Nucleobases, Christopher A. Myers

Legacy Theses & Dissertations (2009 - 2024)

Molecular mechanics (MD) simulations and density functional theory (DFT) have been the backbone of computational chemistry for decades. Due to its accuracy and computational feasibility, DFT has become the go-to method for theoretically predicting interaction energies, polarizability, and other electronic properties of small molecules at the quantum mechanical level. Although less fundamental than DFT, molecular mechanics (MM) algorithms have been just as influential in the fields of biology and chemistry, owing their success to the ability to compute measurable, macroscopic quantities for systems with tens of thousands to hundreds of thousands of atoms at a time. Nevertheless, MD simulations would …


Rationalizing The Band Gap Tunability Of Semiconductors Via Electronic Structure Calculations, Matthew N. Srnec Jan 2017

Rationalizing The Band Gap Tunability Of Semiconductors Via Electronic Structure Calculations, Matthew N. Srnec

Electronic Theses and Dissertations

The polymorphs of titanium dioxide and various diamond-like semiconductor materials are promising candidates in photovoltaic solar cell applications. Several of these polymorphs have been studied with experimental and computational methods, which often aim at tuning the electronic structure, particularly the band gap value of the crystalline solid. Prior studies report that the addition of a substituent into the structure of titanium dioxide decreases its band gap value, but the reasons for this are unknown. Possible explanations for the change in band gap involve the substituent atom's crystal radius, electronegativity, and ionization energy. Understanding the cause of these changes will provide …


Applying Bayesian Machine Learning Methods To Theoretical Surface Science, Shane Carr Dec 2015

Applying Bayesian Machine Learning Methods To Theoretical Surface Science, Shane Carr

McKelvey School of Engineering Theses & Dissertations

Machine learning is a rapidly evolving field in computer science with increasingly many applications to other domains. In this thesis, I present a Bayesian machine learning approach to solving a problem in theoretical surface science: calculating the preferred active site on a catalyst surface for a given adsorbate molecule. I formulate the problem as a low-dimensional objective function. I show how the objective function can be approximated into a certain confidence interval using just one iteration of the self-consistent field (SCF) loop in density functional theory (DFT). I then use Bayesian optimization to perform a global search for the solution. …