Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Climate

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 45

Full-Text Articles in Chemistry

Toward A Coordinated Understanding Of Hydro-Biogeochemical Root Functions In Tropical Forests For Application In Vegetation Models, Daniela F. Cusack, Bradley Christoffersen, Chris M. Smith-Martin, Kelly M. Andersen, Amanda L. Cordeiro, Katrin Fleischer, S. Joseph Wright, Nathaly R. Guerrero-Ramírez, Laynara F. Lugli, Lindsay A. Mcculloch, Mareli Sanchez-Julia, Sarah A. Batterman, Caroline Dallstream, Claire Fortunel, Laura Toro, Lucia Fuchslueger, Michelle Y. Wong, Daniela Yaffar, Joshua B. Fisher, Marie Arnaud, Lee H. Dietterich, Shalom D. Addo-Danso, Oscar J. Valverde-Barrantes, Monique Weemstra, Jing Cheng Ng, Richard J. Norby Feb 2024

Toward A Coordinated Understanding Of Hydro-Biogeochemical Root Functions In Tropical Forests For Application In Vegetation Models, Daniela F. Cusack, Bradley Christoffersen, Chris M. Smith-Martin, Kelly M. Andersen, Amanda L. Cordeiro, Katrin Fleischer, S. Joseph Wright, Nathaly R. Guerrero-Ramírez, Laynara F. Lugli, Lindsay A. Mcculloch, Mareli Sanchez-Julia, Sarah A. Batterman, Caroline Dallstream, Claire Fortunel, Laura Toro, Lucia Fuchslueger, Michelle Y. Wong, Daniela Yaffar, Joshua B. Fisher, Marie Arnaud, Lee H. Dietterich, Shalom D. Addo-Danso, Oscar J. Valverde-Barrantes, Monique Weemstra, Jing Cheng Ng, Richard J. Norby

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest–climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics …


Permafrost Carbon: Progress On Understanding Stocks And Fluxes Across Northern Terrestrial Ecosystems, Claire C. Treat, Anna-Maria Virkkala, Eleanor Burke, Lori Bruhwiler, Abhishek Chatterjee, Joshua B. Fisher, Josh Hashemi, Frans-Jan W. Parmentier, Brendan M. Rogers, Sebastian Westermann, Jennifer D. Watts, Elena Blanc-Betes, Matthias Fuchs, Stefan Kruse, Avni Malhotra, Kimberley Miner, Jens Strauss, Amanda Armstrong, Howard E. Epstein, Bradley Gay, Mathias Goeckede, Aram Kalhori, Dan Kou, Charles E. Miller, Susan M. Natali, Youmi Oh, Sarah Shakil, Oliver Sonnentag, Ruth K. Varner, Scott Zolkos, Edward A.G. Schuur, Gustaf Hugelius Jan 2024

Permafrost Carbon: Progress On Understanding Stocks And Fluxes Across Northern Terrestrial Ecosystems, Claire C. Treat, Anna-Maria Virkkala, Eleanor Burke, Lori Bruhwiler, Abhishek Chatterjee, Joshua B. Fisher, Josh Hashemi, Frans-Jan W. Parmentier, Brendan M. Rogers, Sebastian Westermann, Jennifer D. Watts, Elena Blanc-Betes, Matthias Fuchs, Stefan Kruse, Avni Malhotra, Kimberley Miner, Jens Strauss, Amanda Armstrong, Howard E. Epstein, Bradley Gay, Mathias Goeckede, Aram Kalhori, Dan Kou, Charles E. Miller, Susan M. Natali, Youmi Oh, Sarah Shakil, Oliver Sonnentag, Ruth K. Varner, Scott Zolkos, Edward A.G. Schuur, Gustaf Hugelius

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane …


Impact Of Solar Radiation On Perchlorate Formation In The Atmosphere: Evidence From Ice Core Measurements, Bishnu Kunwar Jan 2024

Impact Of Solar Radiation On Perchlorate Formation In The Atmosphere: Evidence From Ice Core Measurements, Bishnu Kunwar

Electronic Theses and Dissertations

Perchlorate, which derives from both anthropogenic and natural sources in the current environment, poses a substantial health hazard to humans as it competes with iodine uptake in the thyroid gland. Consequently, there has been considerable concern about minimizing human exposure to environmental perchlorate by restricting its release from man-made sources. However, the absence of a clear understanding regarding the respective contributions of man-made and natural sources has hindered widespread regulation efforts. A 300-year (1700–2007) Summit, Greenland ice core record from a previous study showed relatively stable perchlorate concentrations in Greenland snow prior to 1980, with some elevated perchlorate levels associated …


Quantifying The Role Of Water Quality On Nitrogen Cycling In A Trophic Estuary, Kayla Gonzalez-Boy Nov 2023

Quantifying The Role Of Water Quality On Nitrogen Cycling In A Trophic Estuary, Kayla Gonzalez-Boy

Symposium of Student Scholars

Jobos Bay Estuary is an intertidal, tropical estuary located in southern Puerto Rico. The estuary covers about 12 km2 and has a variety of habitats, such as seagrass beds, mangroves, mud flats, and coral reefs, which play important roles in sediment trapping and water quality maintenance. Seagrasses also serve as nursery and feeding grounds and provide shelter for macrofauna. Currently, the role of seagrasses and water quality on nitrogen (N) cycling in trophic estuaries is not well constrained. Understanding variations in sediment-based effects on N cycling rates and transformations, and how they are associated with water quality, is an …


Food Waste Storage Gaseous Emissions Detection And Quantification Using Infrared Spectroscopy, Ryley A. Burton-Tauzer Jan 2023

Food Waste Storage Gaseous Emissions Detection And Quantification Using Infrared Spectroscopy, Ryley A. Burton-Tauzer

Cal Poly Humboldt theses and projects

A growing interest in sustainable waste management and the implementation of new policies have prompted a shift towards alternative resource recovery methods for organic waste, including food waste. To effectively assess alternative food waste treatment scenarios, it is important to evaluate the life cycle impacts associated with each scenario. The storage phase of food waste, encompassing its accumulation in kitchens, and storage in bins for collection and transportation, has been overlooked as a source of greenhouse gases in previous studies. This investigation aimed to identify the greenhouse gases emitted during the initial five-day period of low-oxygen storage. An open dynamic …


Atmospheric Input And Seasonal Inventory Of Dissolved Iron In The Sargasso Sea: Implications For Iron Dynamics In Surface Waters Of The Subtropical Ocean, Peter N. Sedwick, Bettina M. Sohst, K. N. Buck, S. Caprara, R. J. Johnson, D. C. Ohnemus, L. E. Sofen, A. Tagliabue, B. S. Twining, Tara E. Williams Jan 2023

Atmospheric Input And Seasonal Inventory Of Dissolved Iron In The Sargasso Sea: Implications For Iron Dynamics In Surface Waters Of The Subtropical Ocean, Peter N. Sedwick, Bettina M. Sohst, K. N. Buck, S. Caprara, R. J. Johnson, D. C. Ohnemus, L. E. Sofen, A. Tagliabue, B. S. Twining, Tara E. Williams

OES Faculty Publications

Constraining the role of dust deposition in regulating the concentration of the essential micronutrient iron in surface ocean waters requires knowledge of the flux of seawater-soluble iron in aerosols and the replacement time of dissolved iron (DFe) in the euphotic zone. Here we estimate these quantities using seasonally resolved DFe data from the Bermuda Atlantic Time-series Study region and weekly-scale measurements of iron in aerosols and rain from Bermuda during 2019. In response to seasonal changes in vertical mixing, primary production and dust deposition, surface DFe concentrations vary from ∼0.2 nM in early spring to >1 nM in late summer, …


Global Oceanic Diazotroph Database Version 2 And Elevated Estimate Of Global N2 Fixation, Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Ya-Wei Luo Jan 2023

Global Oceanic Diazotroph Database Version 2 And Elevated Estimate Of Global N2 Fixation, Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Ya-Wei Luo

OES Faculty Publications

Marine diazotrophs convert dinitrogen (N2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, …


Nrlmsis 2.1: An Empirical Model Of Nitric Oxide Incorporated Into Msis, J. T. Emmert, M. Jones Jr., D. E. Siskind, D. P. Drob, J. M. Picone, M. H. Stevens, S. M. Bailey, S. Bender, P. F. Bernath, B. Funke, M. E. Hervig, K. Pérot Jan 2022

Nrlmsis 2.1: An Empirical Model Of Nitric Oxide Incorporated Into Msis, J. T. Emmert, M. Jones Jr., D. E. Siskind, D. P. Drob, J. M. Picone, M. H. Stevens, S. M. Bailey, S. Bender, P. F. Bernath, B. Funke, M. E. Hervig, K. Pérot

Chemistry & Biochemistry Faculty Publications

We have developed an empirical model of nitric oxide (NO) number density at altitudes from ∼73 km to the exobase, as a function of altitude, latitude, day of year, solar zenith angle, solar activity, and geomagnetic activity. The model is part of the NRLMSIS® 2.1 empirical model of atmospheric temperature and species densities; this upgrade to NRLMSIS 2.0 consists solely of the addition of NO. MSIS 2.1 assimilates observations from six space-based instruments: UARS/HALOE, SNOE, Envisat/MIPAS, ACE/FTS, Odin/SMR, and AIM/SOFIE. We additionally evaluated the new model against independent extant NO data sets. In this paper, we describe the formulation and …


Insights Into The Deglacial Variability Of Phytoplankton Community Structure In The Eastern Equatorial Pacific Ocean Using [231Pa/230Th]Xs And Opal-Carbonate Fluxes, Danielle Schimmenti, Franco Marcantonio, Christopher T. Hayes, Jennifer Hertzberg, Matthew Schmidt, John Sarao Jan 2022

Insights Into The Deglacial Variability Of Phytoplankton Community Structure In The Eastern Equatorial Pacific Ocean Using [231Pa/230Th]Xs And Opal-Carbonate Fluxes, Danielle Schimmenti, Franco Marcantonio, Christopher T. Hayes, Jennifer Hertzberg, Matthew Schmidt, John Sarao

OES Faculty Publications

Fully and accurately reconstructing changes in oceanic productivity and carbon export and their controls is critical to determining the efficiency of the biological pump and its role in the global carbon cycle through time, particularly in modern CO2 source regions like the eastern equatorial Pacific (EEP). Here we present new high-resolution records of sedimentary 230Th-normalized opal and nannofossil carbonate fluxes and [231Pa/230Th]xs ratios from site MV1014-02-17JC in the Panama Basin. We find that, across the last deglaciation, phytoplankton community structure is driven by changing patterns of nutrient (nitrate, iron, and silica) availability which, in …


The Variability Of Seawater Carbonate Chemistry In Two Florida Urban Mangrove Ecosystems, Alexandrina R. Rangel Aug 2021

The Variability Of Seawater Carbonate Chemistry In Two Florida Urban Mangrove Ecosystems, Alexandrina R. Rangel

All HCAS Student Capstones, Theses, and Dissertations

Anthropogenic carbon dioxide (CO2) emissions into the atmosphere are yielding serious impacts across the world’s ocean, including ocean acidification, sea level rise, and increasing seawater temperature. However, these changes are not occurring uniformly across all marine ecosystems. Coastal ecosystems, such as mangroves, already experience extreme and variable environmental conditions due to natural biogeochemical and physical processes. The goal of this study was to document small-scale variability in two urban mangrove ecosystems to gain insight into how ocean acidification will manifest within these systems. Using a stand-up paddleboard, a suite of sensors, and traditional bottle sampling techniques, we measured …


Coastal Watershed Monitoring And Management: Geomorphology, Geochemistry, And Hydrologic Modeling Of Los Peñasquitos Creek, Ca, Ravleen Khalsa-Basra Jan 2021

Coastal Watershed Monitoring And Management: Geomorphology, Geochemistry, And Hydrologic Modeling Of Los Peñasquitos Creek, Ca, Ravleen Khalsa-Basra

Theses

Rivers in semi-arid climates are directly influenced by local geographic and hydrologic conditions and impacted by modifications to hydrology via urbanization. Changes can influence erosion, morphology, habitat sustainability, and watershed health. In highly urbanized southern California coastal regions, these rare open spaces provide vital ecosystem services. Los Peñasquitos Creek in San Diego County is one such watershed. Using stream surveying and laboratory methods we quantified channel characteristics, grain size distribution, total metal concentration [M], organic carbon (%OC), and phosphate to longitudinally characterize the creek for improved management. Results identified three distinct reaches in the watershed (upper, middle, lower). Downstream, depth …


Fifteen Years Of Hfc-134a Satellite Observations: Comparisons With Slimcat Calculations, Jeremy J. Harrison, Martyn P. Chipperfield, Christopher D. Boone, Sandip S. Dhomse, Peter F. Bernath Jan 2021

Fifteen Years Of Hfc-134a Satellite Observations: Comparisons With Slimcat Calculations, Jeremy J. Harrison, Martyn P. Chipperfield, Christopher D. Boone, Sandip S. Dhomse, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

The phase out of anthropogenic ozone-depleting substances such as chlorofluorocarbons under the terms of the Montreal Protocol led to the development and worldwide use of hydrofluorocarbons (HFCs) in refrigeration, air conditioning, and as blowing agents and propellants. Consequently, over recent years, the atmospheric abundances of HFCs have dramatically increased. HFCs are powerful greenhouse gases and are now controlled under the terms of the 2016 Kigali Amendment to the Montreal Protocol. HFC-134a is currently the most abundant HFC in the atmosphere, breaking the 100 ppt barrier in 2018, and can be measured in the Earth's atmosphere by the satellite remote-sensing instrument …


The Role Of Oxygen In Stimulating Methane Production In Wetlands, Jared L. Wilmoth, Jeffra K. Schaefer, Danielle R. Schlesinger, Spencer W. Roth, Patrick G. Hatcher, Julie K. Shoemaker, Xinning Zhang Jan 2021

The Role Of Oxygen In Stimulating Methane Production In Wetlands, Jared L. Wilmoth, Jeffra K. Schaefer, Danielle R. Schlesinger, Spencer W. Roth, Patrick G. Hatcher, Julie K. Shoemaker, Xinning Zhang

Chemistry & Biochemistry Faculty Publications

Methane (CH4), a potent greenhouse gas, is the second most important greenhouse gas contributor to climate change after carbon dioxide (CO2). The biological emissions of CH4 from wetlands are a major uncertainty in CH4 budgets. Microbial methanogenesis by Archaea is an anaerobic process accounting for most biological CH4 production in nature, yet recent observations indicate that large emissions can originate from oxygenated or frequently oxygenated wetland soil layers. To determine how oxygen (O2) can stimulate CH4 emissions, we used incubations of Sphagnum peat to demonstrate that the temporary exposure of …


Long Term Air Quality Analysis In Reference To Thermal Power Plants Using Satellite Data In Singrauli Region, India, H. K. Romana, Ramesh P. Singh, D. P. Shukla Aug 2020

Long Term Air Quality Analysis In Reference To Thermal Power Plants Using Satellite Data In Singrauli Region, India, H. K. Romana, Ramesh P. Singh, D. P. Shukla

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The exponentially growing population and related anthropogenic activities have led to modifications in local environment. The change in local environment, evolving pattern of land use, concentrations of greenhouse gases and aerosols alter the energy balance of our climate system. This alteration in climate is leading to pre-mature deaths worldwide. This study analyses the air quality of Singrauli region, Madhya Pradesh, India for the past 15 years. Otherwise known as Urjanchal “the energy capital” of India has been declared as critically polluted by CPCB. The study provides an updated list of thermal power plants in the study area and their emission …


Seasonal Transport Of Dissolved Inorganic Carbon And Total Alkalinity Across The Louisiana Shelf, Michelle M. Anderson Jun 2020

Seasonal Transport Of Dissolved Inorganic Carbon And Total Alkalinity Across The Louisiana Shelf, Michelle M. Anderson

LSU Master's Theses

Rivers and wetlands are a major source of terrestrial derived carbon for coastal ocean margins. Unfortunately, Louisiana’s wetlands are threatened by ongoing high rates of erosion, deterioration, and unprecedented rates of river water discharge that changes seasonally, leading to a net loss of terrestrial carbon into the northern Gulf of Mexico (nGOM). There exists a current lack of understanding about the distribution of dissolved inorganic carbon (DIC) and total alkalinity (TAlk) within the shallowest regions of the Louisiana shelf. Even less is known about how the transport of DIC alters seasonally with changes in river outflow and shelf currents. Quantifying …


Karena Mckinney: Mapping A Clearer Picture Of Air Pollution's Effects, Christina Nunez May 2020

Karena Mckinney: Mapping A Clearer Picture Of Air Pollution's Effects, Christina Nunez

Colby Magazine

"If we want to control air quality and address climate change, the solution won't involve fiddling with nature's emissions-it will be about cleaning up man-made ones." -Karena McKinney, associate professor of atmospheric chemistry


Massive Peatland Carbon Banks Vulnerable To Rising Temperatures, A. M. Hopple, R. M. Wilson, M. Kolton, Cassandra A. Zalman, J. P. Chanton, J. Kostka, P. J. Hanson, Jason K. Keller, S. D. Bridgham May 2020

Massive Peatland Carbon Banks Vulnerable To Rising Temperatures, A. M. Hopple, R. M. Wilson, M. Kolton, Cassandra A. Zalman, J. P. Chanton, J. Kostka, P. J. Hanson, Jason K. Keller, S. D. Bridgham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands contain one-third of the world’s soil carbon (C). If destabilized, decomposition of this vast C bank could accelerate climate warming; however, the likelihood of this outcome remains unknown. Here, we examine peatland C stability through five years of whole-ecosystem warming and two years of elevated atmospheric carbon dioxide concentrations (eCO2). Warming exponentially increased methane (CH4) emissions and enhanced CH4 production rates throughout the entire soil profile; although surface CH4 production rates remain much greater than those at depth. Additionally, older deeper C sources played a larger role in decomposition following prolonged warming. Most …


Synergistic Use Of Remote Sensing And Modeling For Estimating Net Primary Productivity In The Red Sea With Vgpm, Eppley-Vgpm, And Cbpm Models Intercomparison, Wenzhao Li, Surya Prakash Tiwari, Hesham El-Askary, Mohamed Ali Qurban, Vassilis Amiridis, K. P. Manikandan, Michael J. Garay, Olga V. Kalashnikova, Thomas C. Piechota, Daniele C. Struppa May 2020

Synergistic Use Of Remote Sensing And Modeling For Estimating Net Primary Productivity In The Red Sea With Vgpm, Eppley-Vgpm, And Cbpm Models Intercomparison, Wenzhao Li, Surya Prakash Tiwari, Hesham El-Askary, Mohamed Ali Qurban, Vassilis Amiridis, K. P. Manikandan, Michael J. Garay, Olga V. Kalashnikova, Thomas C. Piechota, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Primary productivity (PP) has been recently investigated using remote sensing-based models over quite limited geographical areas of the Red Sea. This work sheds light on how phytoplankton and primary production would react to the effects of global warming in the extreme environment of the Red Sea and, hence, illuminates how similar regions may behave in the context of climate variability. study focuses on using satellite observations to conduct an intercomparison of three net primary production (NPP) models--the vertically generalized production model (VGPM), the Eppley-VGPM, and the carbon-based production model (CbPM)--produced over the Red Sea domain for the 1998-2018 time period. …


Lithological And Geochemical Responses To Abrupt Global And Regional Paleoenvironmental Changes During The Aptian In A Hemipelagic Setting Of The Eastern Iberian Peninsula: A Multi-Proxy Approach, Jander Socorro Mar 2020

Lithological And Geochemical Responses To Abrupt Global And Regional Paleoenvironmental Changes During The Aptian In A Hemipelagic Setting Of The Eastern Iberian Peninsula: A Multi-Proxy Approach, Jander Socorro

FIU Electronic Theses and Dissertations

Intense episodes of environmental perturbations and regionally to globally distributed, oxygen-deprived marine facies characterize the Cretaceous sedimentary record. The Organyà Basin in the Spanish Pyrenees chronicles this period in expanded stratigraphic sequences that enabled high-resolution sampling and detailed analysis of disturbances poorly recorded in more lithologically condensed sections. Here, I present an integrated multi-proxy study aimed at understanding the Basin’s response to changing paleoenvironmental conditions during the early Aptian stage of the Cretaceous.

Results from the El Pui section indicate that large-scale (> 1‰), negative carbon isotope excursions (CIEs) that show no corresponding shifts in local sources of organic matter …


Nrlmsis 2.0: A Whole-Atmosphere Empirical Model Of Temperature And Neutral Species Densities, J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, Peter F. Bernath, X. Chu, E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams, T. Yuan Jan 2020

Nrlmsis 2.0: A Whole-Atmosphere Empirical Model Of Temperature And Neutral Species Densities, J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, Peter F. Bernath, X. Chu, E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams, T. Yuan

Chemistry & Biochemistry Faculty Publications

NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other …


Molecular Fossils From Phytoplankton Reveal Secular Pco2 Trend Over The Phanerozoic, Caitlyn R. Witkowski, Johan W. H. Weijers, Brian S. Blais, Stefan Schouten, Jaap S. Sinninghe Damsté Nov 2018

Molecular Fossils From Phytoplankton Reveal Secular Pco2 Trend Over The Phanerozoic, Caitlyn R. Witkowski, Johan W. H. Weijers, Brian S. Blais, Stefan Schouten, Jaap S. Sinninghe Damsté

Science and Technology Department Faculty Journal Articles

Past changes in the atmospheric concentration of carbon dioxide (PCO2) have had a major impact on earth system dynamics; yet, reconstructing secular trends of past PCO2 remains a prevalent challenge in paleoclimate studies. The current long-term PCO2reconstructions rely largely on the compilation of many different proxies, often with discrepancies among proxies, particularly for periods older than 100 million years (Ma). Here, we reconstructed Phanerozoic PCO2 from a single proxy: the stable carbon isotopic fractionation associated with photosynthesis (Ɛp) that increases as PCO2 increases. This concept has been widely applied to alkenones, but here, we …


Spatial Variation In Throughfall, Soil, And Plant Water Isotopes In A Temperate Forest, Gregory R. Goldsmith, Scott T. Allen, Sabine Braun, Nadine Engbersen, Clara Romero González-Quijano, James W. Kirchner, Rolf T. W. Siegwolf Nov 2018

Spatial Variation In Throughfall, Soil, And Plant Water Isotopes In A Temperate Forest, Gregory R. Goldsmith, Scott T. Allen, Sabine Braun, Nadine Engbersen, Clara Romero González-Quijano, James W. Kirchner, Rolf T. W. Siegwolf

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Studies of stable isotopes of water in the environment have been fundamental to advancing our understanding of how water moves through the soil‐plant‐atmosphere continuum; however, much of this research focuses on how water isotopes vary in time, rather than in space. We examined the spatial variation in the δ18O and δ2H of throughfall and bulk soil water, as well as branch xylem and bulk leaf water of Picea abies (Norway Spruce) and Fagus sylvatica (Beech), in a 1 ha forest plot in the northern Alps of Switzerland. Means and ranges of water isotope ratios varied considerably …


Geochemistry Of Archaeological And Marine Environments In Southwest Maine, Heather L. Bushie Apr 2018

Geochemistry Of Archaeological And Marine Environments In Southwest Maine, Heather L. Bushie

Thinking Matters Symposium Archive

Two archaeological excavations for the University of Southern Maine collected sediment columns from select units for geological and chemical analysis. The Spiller Farms site is a Native American site located in Wells, Maine marking a transition period between the Pleistocene and Holocene epochs, 12,000 BP. The Malaga Island site was a historic mixed-race community at the north end of Casco Bay where sediment columns were obtained in near-shore and subtidal zones. The samples obtained from Malaga Island have been radiocarbon dated to 3800 +/- 30 BP at 23 meters below the low-tide line. X-ray fluorescence (XRF) analysis is being conducted …


Wildfire Emissions In The Context Of Global Change And The Implications For Mercury Pollution, Aditya Kumar Jan 2018

Wildfire Emissions In The Context Of Global Change And The Implications For Mercury Pollution, Aditya Kumar

Dissertations, Master's Theses and Master's Reports

Wildfires are episodic disturbances that exert a significant influence on the Earth system. They emit substantial amounts of atmospheric pollutants, which can impact atmospheric chemistry/composition and the Earth’s climate at the global and regional scales. This work presents a collection of studies aimed at better estimating wildfire emissions of atmospheric pollutants, quantifying their impacts on remote ecosystems and determining the implications of 2000s-2050s global environmental change (land use/land cover, climate) for wildfire emissions following the Intergovernmental Panel on Climate Change (IPCC) A1B socioeconomic scenario.

A global fire emissions model is developed to compile global wildfire emission inventories for major atmospheric …


Depletion Of Ozone And Reservoir Species Of Chlorine And Nitrogen Oxide In The Lower Antarctic Polar Vortex Measured From Aircraft, T. Jurkat, C. Voigt, S. Kaufmann, J.-U. Grooß, H. Ziereis, A. Dörnbrack, P. Hoor, H. Bozem, A. Engel, H. Bönisch, P. F. Bernath Jun 2017

Depletion Of Ozone And Reservoir Species Of Chlorine And Nitrogen Oxide In The Lower Antarctic Polar Vortex Measured From Aircraft, T. Jurkat, C. Voigt, S. Kaufmann, J.-U. Grooß, H. Ziereis, A. Dörnbrack, P. Hoor, H. Bozem, A. Engel, H. Bönisch, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

Novel airborne in situ measurements of inorganic chlorine, nitrogen oxide species, and ozone were performed inside the lower Antarctic polar vortex and at its edge in September 2012. We focus on one flight during the Transport and Composition of the LMS/Earth System Model Validation (TACTS/ESMVal) campaign with the German research aircraft HALO (High-Altitude LOng range research aircraft), reaching latitudes of 65°S and potential temperatures up to 405 K. Using the early winter correlations of reactive trace gases with N2O from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), we find high depletion of chlorine reservoir gases up to ∼40% …


The Role Of Sulfur Dioxide In Stratospheric Aerosol Formation Evaluated By Using In Situ Measurements In The Tropical Lower Stratosphere, A. W. Rollins, T. D. Thornberry, L. A. Watts, P. Yu, K. H. Rosenlof, M. Mills, E. Baumann, F. R. Giorgetta, T. V. Bui, M. Höpfner, P. F. Bernath May 2017

The Role Of Sulfur Dioxide In Stratospheric Aerosol Formation Evaluated By Using In Situ Measurements In The Tropical Lower Stratosphere, A. W. Rollins, T. D. Thornberry, L. A. Watts, P. Yu, K. H. Rosenlof, M. Mills, E. Baumann, F. R. Giorgetta, T. V. Bui, M. Höpfner, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO2) in maintaining background SAs has been debated for decades without in situ measurements of SO2 at the tropical tropopause to inform this issue. Here we clarify the role of SO2 in maintaining SAs by using new in situ SO2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO2 mixing ratios to estimate the global flux of …


Ozone Depletion, A Big Threat To Climate Change: What Can Be Done?, Sumera Aziz Ali, Savera Aziz Ali, Nadir Suhail Feb 2017

Ozone Depletion, A Big Threat To Climate Change: What Can Be Done?, Sumera Aziz Ali, Savera Aziz Ali, Nadir Suhail

Community Health Sciences

Ozone in the stratosphere is very important as it acts as a safeguard for the earth and protects life from harmful ultraviolet radiations coming from the sun. Depletion of stratospheric ozone, resulting from atmospheric pollution has led to increased ultraviolet radiation at the earth’s surface as well as spectral shifts to the more biologically damaging shorter wavelengths. A decrease in the concentration of stratospheric ozone enhances the solar ultraviolet (UV) radiation, which is harmful to the growth of the plant and various other metabolic processes of the organisms and might cause changes in pigment concentrations, nucleic acids, and proteins. Multiple …


Version 1.3 Aim Sofie Measured Methane (Ch4): Validation And Seasonal Climatology, P. P. Rong, J. M. Russell Iii, B. T. Marshall, D. E. Siskind, M. E. Hervig, L. L. Gordley, P. F. Bernath, K. A. Walker Nov 2016

Version 1.3 Aim Sofie Measured Methane (Ch4): Validation And Seasonal Climatology, P. P. Rong, J. M. Russell Iii, B. T. Marshall, D. E. Siskind, M. E. Hervig, L. L. Gordley, P. F. Bernath, K. A. Walker

Chemistry & Biochemistry Faculty Publications

The V1.3 methane (CH4) measured by the Aeronomy of Ice in the Mesosphere (AIM) Solar Occultation for Ice Experiment (SOFIE) instrument is validated in the vertical range of ~25–70 km. The random error for SOFIE CH4 is ~0.1–1% up to ~50 km and degrades to ~9% at ∼ 70 km. The systematic error remains at ~4% throughout the stratosphere and lower mesosphere. Comparisons with CH4 data taken by the SCISAT Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) show an agreement within ~15% in the altitude range ~30–60 …


Intercomparison And Evaluation Of Satellite Peroxyacetyl Nitrate Observations In The Upper Troposphere-Lower Stratosphere, Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, Peter F. Bernath Jan 2016

Intercomparison And Evaluation Of Satellite Peroxyacetyl Nitrate Observations In The Upper Troposphere-Lower Stratosphere, Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere-lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on …