Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Chemistry

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …


Au@H-Al2o3 Analogic Yolk–Shell Nanocatalyst For Highly Selective Synthesis Of Biomass-Derived D-Xylonic Acid Via Regulation Of Structure Effects, Jiliang Ma, Zewei Liu, Junlong Song, Linxin Zhong, Dequan Xiao, Hongxia Xi, Xuehui Li, Runcang Sun, Xinwen Peng Oct 2018

Au@H-Al2o3 Analogic Yolk–Shell Nanocatalyst For Highly Selective Synthesis Of Biomass-Derived D-Xylonic Acid Via Regulation Of Structure Effects, Jiliang Ma, Zewei Liu, Junlong Song, Linxin Zhong, Dequan Xiao, Hongxia Xi, Xuehui Li, Runcang Sun, Xinwen Peng

Chemistry and Chemical Engineering Faculty Publications

Selective oxidation of biomass-based monosaccharides into value-added sugar acids is highly desired, but limited success of producing D-xylonic acid has been achieved. Herein, we report an efficient catalyst system, viz., Au nanoparticles anchored on the inner walls of hollow Al2O3 nanospheres (Au@h- Al2O3), which could catalyze the selective oxidation of D-xylose into D-xylonic acid under base-free conditions. The mesoporous Al2O3 shell as the adsorbent first adsorbed D-xylose. Then, the interface of Au nanoparticles and Al2O3 as active sites spontaneously dissociated O2, and …


The Aromatization Of Propene Via Nano-Size Hzsm-5, Wayne Seames, Swapnil Fegade, Inna Sakodynskaya, Darrin Muggli, Brian Tande, Alena Kubatova, Evguenii Kozliak Oct 2018

The Aromatization Of Propene Via Nano-Size Hzsm-5, Wayne Seames, Swapnil Fegade, Inna Sakodynskaya, Darrin Muggli, Brian Tande, Alena Kubatova, Evguenii Kozliak

Chemistry Faculty Publications

Zeolite (ZSM) catalysts are known to convert small-size alkenes, e.g., propene, into aromatic hydrocarbons, specifically benzene, toluene and xylenes (BTX), with both high efficiency and specificity. The efficiency of conventional and hierarchical nano-size ZSM-5 for propene aromatization was compared in this study using a Design of Experiments (DOE) approach combined with detailed product analysis. Contrary to our expectations, the former showed a significantly greater BTX yield than the latter. Analysis of the obtained data by DOE and additional experiments with soybean oil cracking using both catalyst types indicated that a reason for the observed reduced activity of nano-scale zeolites may …


Atomically Dispersed Pd On Nanodiamond/Graphene Hybrid For Selective Hydrogenation Of Acetylene, Fei Huang, Yuchen Deng, Yunlei Chen, Xiangbin Cai, Mia Peng, Zhimin Jia, Pengju Ren, Dequan Xiao, Xiaodong Wen, Ning Wang, Hongyang Liu, Ding Ma Sep 2018

Atomically Dispersed Pd On Nanodiamond/Graphene Hybrid For Selective Hydrogenation Of Acetylene, Fei Huang, Yuchen Deng, Yunlei Chen, Xiangbin Cai, Mia Peng, Zhimin Jia, Pengju Ren, Dequan Xiao, Xiaodong Wen, Ning Wang, Hongyang Liu, Ding Ma

Chemistry and Chemical Engineering Faculty Publications

An atomically dispersed palladium (Pd) catalyst supported onto a defective nanodiamond-graphene (ND@G) is reported here for selective hydrogenation of acetylene in the presence of abundant ethylene. The catalyst exhibits remarkable performance for the selective conversion of acetylene to ethylene: high conversion (100%), ethylene selectivity (90%), and good stability (i.e., steady for at least 30 hours). The unique struc-ture of the catalyst (i.e., atomically dispersion of Pd atoms on graphene through Pd-C bond anchoring) ensure the facile desorption of ethylene against the over-hydrogenation of ethylene to undesired ethane, which is the key for the outstanding selectivity of the catalyst.


Assembling Of Niox/Mwcnts-Gc Anodic Nanocatalyst For Water Electrolysis Applications, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Saher D. Khamis Eng Sep 2018

Assembling Of Niox/Mwcnts-Gc Anodic Nanocatalyst For Water Electrolysis Applications, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Saher D. Khamis Eng

Chemical Engineering

Glassy carbon (GC) electrode is intended to be modified with nickel oxide (NiOx) and multiwalled carbon nanotubes (MWCNTs) in the anodic reaction of water electrolysis. NiOx deposition time is optimized and a 5 min was enough to attain the maximum activity. A further modification of the catalyst with MWCNTs could greatly enhance its stability during continuous electrolysis. As an outcome, an energy amount of 21.7 kWh/KgO2 is minimized. Several electrochemical and materials characterization setups will be utilized to test the catalyst activity and to know its geometry and structure.


Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Yaser M. Asal Mr, Islam M. Al-Akraa Dr, Amr M. Arafa Eng. Aug 2018

Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Yaser M. Asal Mr, Islam M. Al-Akraa Dr, Amr M. Arafa Eng.

Chemical Engineering

Manganese oxide (MnOx) and multiwalled carbon nanotubes (MWCNTs) are intended to modify the GC electrode for oxygen evolution reaction (OER). Optimization of MnOx loading is carried out and the deposition of 55 cycles was sufficient to obtain the highest activity toward OER. The stability of the catalyst is enhanced by the addition of MWCNTs. As a result, an amount of 22 kWh/Kg of O2 of energy is saved. Several techniques including cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy will be combined to track the catalyst activity and to determine its …


Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Amr M. Arafa Eng. Jan 2018

Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Amr M. Arafa Eng.

Chemical Engineering

Manganese oxide (MnOx) and multiwalled carbon nanotubes (MWCNTs) are intended to modify the GC electrode for oxygen evolution reaction (OER). Optimization of MnOx loading is carried out and the deposition of 55 cycles was sufficient to obtain the highest activity toward OER. The stability of the catalyst is enhanced by the addition of MWCNTs. As a result, an amount of 22 kWh/Kg of O2 of energy is saved. Several techniques including cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy will be combined to track the catalyst activity and to determine its morphology …


Assembling Of Niox/Mwcnts-Gc Anodic Nanocatalyst For Water Electrolysis Applications, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Saher D. Khamis Eng Jan 2018

Assembling Of Niox/Mwcnts-Gc Anodic Nanocatalyst For Water Electrolysis Applications, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Saher D. Khamis Eng

Chemical Engineering

Glassy carbon (GC) electrode is intended to be modified with nickel oxide (NiOx) and multiwalled carbon nanotubes (MWCNTs) in the anodic reaction of water electrolysis. NiOx deposition time is optimized and a 5 min was enough to attain the maximum activity. A further modification of the catalyst with MWCNTs could greatly enhance its stability during continuous electrolysis. As an outcome, an energy amount of 21.7 kWh/KgO2 is minimized. Several electrochemical and materials characterization setups will be utilized to test the catalyst activity and to know its geometry and structure.


Photoluminescence Mechanism And Applications Of Zn-Doped Carbon Dots, Quan Xu, Wei Cai, Miaoran Zhang, Yingchun Ye, Yeqing Li, Lipeng Zhang, Yongjian Guo, Zhiqiang Yu, Siyu Li, Xun Lin, Yusheng Chen, Yan Lou, Jason Street, Meng Xu Jan 2018

Photoluminescence Mechanism And Applications Of Zn-Doped Carbon Dots, Quan Xu, Wei Cai, Miaoran Zhang, Yingchun Ye, Yeqing Li, Lipeng Zhang, Yongjian Guo, Zhiqiang Yu, Siyu Li, Xun Lin, Yusheng Chen, Yan Lou, Jason Street, Meng Xu

Faculty & Staff Scholarship

Heteroatom-doped carbon dots (CDs) with excellent optical characteristics and negligible toxicity have emerged in many applications including bioimaging, biosensing, photocatalysis, and photothermal therapy. The metal-doping of CDs using various heteroatoms results in an enhancement of the photophysics but also imparts them with multifunctionality. However, unlike nonmetal doping, typical metal doping results in low fluorescence quantum yields (QYs), and an unclear photoluminescence mechanism. In this contribution, we detail results concerning zinc doped CDs (Zn-CDs) with QYs of up to 35%. The zinc ion charges serve as a surface passivating agent and prevent the aggregation of graphene p–p stacking, leading to an …


Sulfur Resistance Of Ce-Mn/Tio2 Catalysts For Low-Temperature Nh3–Scr, Quan Xu, Wenjing Yang, Jason Street, Yan Lou Jan 2018

Sulfur Resistance Of Ce-Mn/Tio2 Catalysts For Low-Temperature Nh3–Scr, Quan Xu, Wenjing Yang, Jason Street, Yan Lou

Faculty & Staff Scholarship

Ce-Mn/TiO2 catalyst prepared using a simple impregnation method demonstrated a better low-temperature selective catalytic reduction of NO with NH3 (NH3–SCR) activity in comparison with the sol-gel method. The Ce-Mn/TiO2 catalyst loading with 20% Ce had the best low-temperature activity and achieved a NO conversion rate higher than 90% at 140–260°C with a 99.7% NO conversion rate at 180°C. The Ce-Mn/TiO2 catalyst only had a 6% NO conversion rate decrease after 100ppm of SO2 was added to the stream. When SO2 was removed from the stream, the catalyst was able to recover completely. The crystal structure, morphology, textural properties and valence …


Single-Site Catalyst Promoters Accelerate Metal- Catalyzed Nitroarene Hydrogenation, Liang Wang, Erjia Guan, Jian Zhang, Junhao Yang, Yihan Zhu, Yu Han, Ming Yang, Cheng Cen, Gang Fu, Bruce C. Gates, Feng-Shou Xiao Jan 2018

Single-Site Catalyst Promoters Accelerate Metal- Catalyzed Nitroarene Hydrogenation, Liang Wang, Erjia Guan, Jian Zhang, Junhao Yang, Yihan Zhu, Yu Han, Ming Yang, Cheng Cen, Gang Fu, Bruce C. Gates, Feng-Shou Xiao

Faculty & Staff Scholarship

Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydro- genation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn- TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various …


Fabrication Of Cuox-Pd Nanocatalyst Supported On A Glassy Carbon Electrode For Enhanced Formic Acid Electro-Oxidation, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2018

Fabrication Of Cuox-Pd Nanocatalyst Supported On A Glassy Carbon Electrode For Enhanced Formic Acid Electro-Oxidation, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

Formic acid (FA) electro-oxidation (FAO) was investigated at a binary catalyst composed of palladium nanoparticles (PdNPs) and copper oxide nanowires (CuOxNWs) and assembled onto a glassy carbon (GC) electrode. /e deposition sequence of PdNPs and CuOxNWs was properly adjusted in such a way that could improve the electrocatalytic activity and stability of the electrode toward FAO. Several techniques including cyclic voltammetry, chronoamperometry, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction were all combined to report the catalyst’s activity and to evaluate its morphology, composition, and structure. /e highest catalytic activity and stability were obtained at the CuOx/Pd/GC …