Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

PDF

Andrew C. Hillier

2014

Articles 1 - 5 of 5

Full-Text Articles in Chemistry

Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier Jun 2014

Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier

Andrew C. Hillier

The influence of oxidation state on the permeability of several probe molecules through conducting polymer membranes comprising composites of poly(aniline) and poly(styrenesulfonate) was examined in aqueous solution. Pure poly(aniline) membranes displayed a characteristic increase in permeability between reduced and half-oxidized states for neutrally charged phenol and negatively charged 4-hydroxybenzenesulfonate. In contrast, positively charged pyridine experienced decreased permeability through the membrane when poly(aniline) was switched from the reduced to the half-oxidized state. This behavior can be explained by a combination of oxidation-induced film swelling and the anion-exchange character of the positively charged membrane. The membrane composition was modified to include a …


Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier Jun 2014

Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier

Andrew C. Hillier

The influence of a surface potential gradient on the location and extent of electrochemical reactions was examined using a scanning electrochemical microscope. A linear potential gradient was imposed on the surface of a platinum-coated indium tin oxide electrode by applying two different potential values at the edges of the electrode. The applied potentials were used to control the location and extent of several electrochemical reactions, including the oxidation of Ru(NH3)62+, the oxidation of H2, and the oxidation of H2 in the presence of adsorbed CO. Scanning electrochemical mapping of these reactions was achieved by probing the feedback current associated with …


High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier Jun 2014

High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier

Andrew C. Hillier

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer. …


Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier May 2014

Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Andrew C. Hillier

Surface gradients can be used to perform a wide range of functions and represent a novel experimental platform for combinatorial discovery and analysis. In this work, a gradient in the coverage of a surface-immobilized poly(ethylene glycol) (PEG) layer is constructed to interrogate cell adhesion on a solid surface. Variation of surface coverage is achieved by controlled transport of a reactive PEG precursor from a point source through a hydrated gel. Immobilization of PEG is achieved by covalent attachment of the PEG molecule via direct coupling chemistry to a cystamine self-assembled monolayer on gold. This represents a simple method for creating …


Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier May 2014

Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Andrew C. Hillier

Considerable effort has been expended in efforts to create surfaces that resist the adsorption of proteins and cells for biomedical applications. The majority of such work has focused on surfaces constructed from bulk polymers or thin polymer films. However, the fabrication of surfaces via self-assembled monolayers (SAMs) has attracted considerable interest because of the robustness, versatility, and wide-ranging applicability of these materials. SAMs are particularly appealing for biological systems where well-defined surface chemistries can be created to facilitate coupling, biorecognition, or cell adhesion along with a host of other applications in biochemistry and biotechnology.