Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Chemistry

Probing The Link Between Pancratistatin And Mitochondrial Apoptosis Through Changes In The Membrane Dynamics On The Nanoscale, Stuart R. Castillo, Brett W. Rickeard, Mitchell Dipasquale, Michael H.L. Nguyen, Aislyn Lewis-Laurent, Milka Doktorova, Batuhan Kav, Markus S. Miettinen, Michihiro Nagao, Elizabeth G. Kelley, Drew Marquardt Jun 2022

Probing The Link Between Pancratistatin And Mitochondrial Apoptosis Through Changes In The Membrane Dynamics On The Nanoscale, Stuart R. Castillo, Brett W. Rickeard, Mitchell Dipasquale, Michael H.L. Nguyen, Aislyn Lewis-Laurent, Milka Doktorova, Batuhan Kav, Markus S. Miettinen, Michihiro Nagao, Elizabeth G. Kelley, Drew Marquardt

Chemistry and Biochemistry Publications

Pancratistatin (PST) is a natural antiviral alkaloid that has demonstrated specificity toward cancerous cells and explicitly targets the mitochondria. PST initiates apoptosis while leaving healthy, noncancerous cells unscathed. However, the manner by which PST induces apoptosis remains elusive and impedes the advancement of PST as a natural anticancer therapeutic agent. Herein, we use neutron spin-echo (NSE) spectroscopy, molecular dynamics (MD) simulations, and supporting small angle scattering techniques to study PST's effect on membrane dynamics using biologically representative model membranes. Our data suggests that PST stiffens the inner mitochondrial membrane (IMM) by being preferentially associated with cardiolipin, which would lead to …


From Fat To Bilayers: Understanding Where And How Vitamin E Works, Jeffrey Atkinson, Drew Marquardt, Mitchell Dipasquale, Thad Harroun Nov 2021

From Fat To Bilayers: Understanding Where And How Vitamin E Works, Jeffrey Atkinson, Drew Marquardt, Mitchell Dipasquale, Thad Harroun

Chemistry and Biochemistry Publications

Vitamin E was one of the last fat-soluble vitamins to be discovered. We provide here an historical review of the discovery and the increasingly more detailed understanding of the role of α-tocopherol both as an antioxidant and as a structural component of phospholipid bilayer membranes. Despite the detailed descriptions now available of the orientation, location, and dynamics of α-tocopherol in lipid bilayers, there are still gaps in our knowledge of the effect of α-tocopherol and its potential receptors than control gene transcription.


Size-Dependent Interactions Of Lipid-Coated Gold Nanoparticles: Developing A Better Mechanistic Understanding Through Model Cell Membranes And In Vivo Toxicity, Arek M. Engstrom, Ryan A. Faase, Joe E. Baio, Marilyn R. Mackiewicz, Stacey L. Harper Jan 2020

Size-Dependent Interactions Of Lipid-Coated Gold Nanoparticles: Developing A Better Mechanistic Understanding Through Model Cell Membranes And In Vivo Toxicity, Arek M. Engstrom, Ryan A. Faase, Joe E. Baio, Marilyn R. Mackiewicz, Stacey L. Harper

Chemistry Faculty Publications and Presentations

Introduction: Humans are intentionally exposed to gold nanoparticles (AuNPs) where they are used in variety of biomedical applications as imaging and drug delivery agents as well as diagnostic and therapeutic agents currently in clinic and in a variety of upcoming clinical trials. Consequently, it is critical that we gain a better understanding of how physiochemical properties such as size, shape, and surface chemistry drive cellular uptake and AuNP toxicity in vivo. Understanding and being able to manipulate these physiochemical properties will allow for the production of safer and more efficacious use of AuNPs in biomedical applications.
Methods and Materials: Here, …


Aspirin Inhibits Formation Of Cholesterol Rafts In Fluid Lipid Membranes, Richard J. Alsop, Laura Toppozini, Drew Marquardt, Norbert Kučerka, Thad A. Harroun, Maikel C. Rheinstädter Jan 2015

Aspirin Inhibits Formation Of Cholesterol Rafts In Fluid Lipid Membranes, Richard J. Alsop, Laura Toppozini, Drew Marquardt, Norbert Kučerka, Thad A. Harroun, Maikel C. Rheinstädter

Chemistry and Biochemistry Publications

Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin …


Lipid-Protein Interactions Probed By Electron Crystallography, Steve L. Reichow, Tamir Gonen Oct 2009

Lipid-Protein Interactions Probed By Electron Crystallography, Steve L. Reichow, Tamir Gonen

Chemistry Faculty Publications and Presentations

Electron crystallography is arguably the only electron cryomicroscopy (cryoEM) technique able to deliver an atomic-resolution structure of membrane proteins embedded in the lipid-bilayer. In the electron crystallographic structures of the light driven ion pump, bacteriorhodopsin, and the water channel, aquaporin-0, sufficiently high resolution was obtained and both lipid and protein were visualized, modeled and described in detail. An extensive network of lipid-protein interactions mimicking native membranes is established and maintained in two-dimensional (2D) crystalline vesicles used for structural analysis by electron crystallography. Lipids are tightly integrated into the protein's architecture where they can affect the function, structure, quaternary assembly and …