Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Chemistry

Copper(Ii) And Silver(I)‑1,10‑Phenanthroline‑5,6‑Dione Complexes Interact With Double‑Stranded Dna: Further Evidence Of Their Apparent Multi‑Modal Activity Towards Pseudomonas Aeruginosa, Anna Clara Milesi Galdino, Lívia Viganor, Matheus Mendonça Pereira, Michael Devereux, Malachy Mccann, Marta Helena Branquinha, Zara Molphy, Sinéad O'Carroll, Conor Bain, Georgia Menounou, Andrew Kellett, André Luis Souza Dos Santos Jan 2022

Copper(Ii) And Silver(I)‑1,10‑Phenanthroline‑5,6‑Dione Complexes Interact With Double‑Stranded Dna: Further Evidence Of Their Apparent Multi‑Modal Activity Towards Pseudomonas Aeruginosa, Anna Clara Milesi Galdino, Lívia Viganor, Matheus Mendonça Pereira, Michael Devereux, Malachy Mccann, Marta Helena Branquinha, Zara Molphy, Sinéad O'Carroll, Conor Bain, Georgia Menounou, Andrew Kellett, André Luis Souza Dos Santos

Articles

Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (− 7.9 kcal/mol) or minor (− 7.2 kcal/mol) …


Solvent Stable Microbial Lipases: Current Understanding And Biotechnological Applications, Barry Ryan, Priyanka Priyanka, Yeqi Tan, Gemma K Kinsella, Gary T. Henehan Dec 2018

Solvent Stable Microbial Lipases: Current Understanding And Biotechnological Applications, Barry Ryan, Priyanka Priyanka, Yeqi Tan, Gemma K Kinsella, Gary T. Henehan

Articles

Objective: This review examines on our current understanding of microbial lipase solvent tolerance, with a specific focus on the molecular strategies employed to improve lipase stability in a non-aqueous environment.

Results: It provides an overview of known solvent tolerant lipases and of approaches to improving solvent stability such as; enhancing stabilising interactions, modification of residue flexibility and surface charge alteration. It shows that judicious selection of lipase source supplemented by appropriate enzyme stabilisation, can lead to a wide application spectrum for lipases.

Conclusion: Organic solvent stable lipases are, and will continue to be, versatile and adaptable biocatalytic workhorses commonly employed …


In Vitro Label Free Screening Of Chemotherapeutic Drugs Using Raman Micro-Spectroscopy: Towards A New Paradigm Of Spectralomics., Zeineb Farhane, Haq Nawaz, Franck Bonnier, Hugh Byrne Mar 2018

In Vitro Label Free Screening Of Chemotherapeutic Drugs Using Raman Micro-Spectroscopy: Towards A New Paradigm Of Spectralomics., Zeineb Farhane, Haq Nawaz, Franck Bonnier, Hugh Byrne

Articles

This overview groups some of the recent studies highlighting the potential application of Raman micro-spectroscopy as an analytical technique in preclinical development to predict drug mechanism of action and in clinical application as a companion diagnostic and in personalised therapy due to its capacity to predict cellular resistance and therefore to optimise chemotherapeutic treatment efficacy.

Notably, the anthracyclines, Doxorubicin and Actinomycin D, elicit similar spectroscopic signatures of subcellular interaction characteristic of the mode of action of intercalation. Although Cisplatin and Vincristine show markedly different signatures, at low exposure doses, their signatures at higher doses show marked similarities to those elicited …


Synthesis, Characterisation And Dna Intercalation Studies Of Regioisomers Of Ruthenium (Ii) Polypyridyl Complexes, Laura Perdisatt, Samar Moqadasi, Luke O'Neill, Gary Hessman, Alessandra Ghion, Muhammad Qasim Mushtaq Warraich, Alan Casey, Christine O'Connor Jan 2018

Synthesis, Characterisation And Dna Intercalation Studies Of Regioisomers Of Ruthenium (Ii) Polypyridyl Complexes, Laura Perdisatt, Samar Moqadasi, Luke O'Neill, Gary Hessman, Alessandra Ghion, Muhammad Qasim Mushtaq Warraich, Alan Casey, Christine O'Connor

Articles

Regioisomers of the functional group of the main ligand (L) on a series of [Ru(phen)2L]2+and [Ru(bpy)2L]2+ complexes, where phen is 1,10 phenanthroline and bpy is 2,2′-bipyridine, were synthesised to investigate the interaction with deoxyribonucleic acid (DNA) as potential therapeutics. UV–Vis binding titrations, thermal denaturation and circular dichroism were used to evaluate their interaction with DNA. The conclusions indicated the significance of the auxiliary ligand; especially 1,10-phenanthroline has on the binding constants (Kb). The systematic variation of auxiliary ligand(phen or bpy), and polypyridyl ligand (4-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzonitrile (CPIP), 2-(4-formylphenyl)imidazo[4,5-f] [1,10] phenanthroline (FPIP), 2-(4-bromophenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP) and 2-(4-nitrophenyl)imidazo[4,5-f] [1,10] phenanthroline (NPIP), split in terms of …


Industrial Grade 2d Molybdenum Disulphide (Mos2): An In-Vitro Exploration Of The Impact On Cellular Uptake, Cytotoxicity, And Inflammation, Caroline Moore, Hugh Byrne, Jonathan N. Coleman, Yuri Volkov, Jennifer Mcintyre Jun 2017

Industrial Grade 2d Molybdenum Disulphide (Mos2): An In-Vitro Exploration Of The Impact On Cellular Uptake, Cytotoxicity, And Inflammation, Caroline Moore, Hugh Byrne, Jonathan N. Coleman, Yuri Volkov, Jennifer Mcintyre

Articles

The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than …


Isolation And Spectroscopic Characterization Of Zn(Ii), Cu(Ii), And Pd(Ii) Complexes Of 1,3,4-Thiadiazole-Derived Ligand, Dariusz Karcz, Arkadiusz Matwijczuk, Bozena Boron, Bernadette Creaven, Leszek Fiedor, Andrzej Niewiadomy, Mariusz Gagos Jan 2017

Isolation And Spectroscopic Characterization Of Zn(Ii), Cu(Ii), And Pd(Ii) Complexes Of 1,3,4-Thiadiazole-Derived Ligand, Dariusz Karcz, Arkadiusz Matwijczuk, Bozena Boron, Bernadette Creaven, Leszek Fiedor, Andrzej Niewiadomy, Mariusz Gagos

Articles

A series of complexes incorporating Zn(II), Cu(II), and Pd(II) ions, and 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (L1) as model ligand, was synthesized in order to examine the nature of potential interactions between biologically active ligands, 1,3,4-thiadiazoles and metal ions with proven biological relevance. The structures of the compounds isolated were characterized using a number of spectroscopic methods including IR, Uv–vis, AAS, steady state and time-resolved fluorescence (TRF). The results obtained suggest that the L1-Zn(II) and L1-Pd(II) complexes consist of one molecule of L1 and one acetate ion acting as ligands, while the L1-Cu(II) complex adapts a 2:1 (L1: metal) stoichiometry. The coordination of L1 …