Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

University of South Carolina

Nanomaterial

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Amorphization Of Pseudocapacitive T−Nb2O5 Accelerates Lithium Diffusivity As Revealed Using Tunable Isomorphic Architectures, Wessel Van Den Bergh, Sean Wechsler, Hasala Nadeesini Lokupitiya, Lauren Jarocha, Kwangnam Kim, James Chapman, Kyoung E. Kweon, Brandon C. Wood, Steve Heald, Morgan Stefik Phd Feb 2022

Amorphization Of Pseudocapacitive T−Nb2O5 Accelerates Lithium Diffusivity As Revealed Using Tunable Isomorphic Architectures, Wessel Van Den Bergh, Sean Wechsler, Hasala Nadeesini Lokupitiya, Lauren Jarocha, Kwangnam Kim, James Chapman, Kyoung E. Kweon, Brandon C. Wood, Steve Heald, Morgan Stefik Phd

Faculty Publications

Intercalationpseudocapacitancecan combinecapacitor-likepower densitieswith battery-likeenergy densities.Such surface-limitedbehaviorrequiresrapid diffusionwhere amorphizationcan increasesolid-statediffusivity.Here intercalationpseudoca-pacitivematerialswith tailoredextentsof amorphizationin T-Nb2O5are first reported.Amorphizationwas characterizedwithWAXS, XPS, XAFS, and EPR which suggesteda peroxide-rich(O22) surface that was consistentwith DFT predictions.A seriesof tunableisomorphicarchitecturesenabledcomparisonswhileindependentlyvaryingtransportparameters.Throughprocessof elimination,solid-statelithium diffusionwas identifiedas thedominantdiffusive-constraintdictatingthe maximumvoltagesweep rate for surface-limitedkinetics(vSLT), termed the Surface-LimitedThreshold(SLT). ThevSLTincreasedwith amorphizationhoweverstable cycling requiredcrystallineT-Nb2O5. A current-responsemodel using series-impedanceswell-matchedtheseobservations.This perspectiverevealedthat amorphizationof T-Nb2O5enhancedsolid-statediffusionby 12.2% and increasedsurface-limitationsby 17.0% (stablesamples).This approachenabledretaining95% lithiationcapacityat ~800mVs1(1,600C-rate equivalent).


Single-Variable Porous Nanomaterial Series From Polymer Structure-Directing Agents, Morgan Stefik Dec 2021

Single-Variable Porous Nanomaterial Series From Polymer Structure-Directing Agents, Morgan Stefik

Faculty Publications

Block polymer structure-directing agents (SDA) enable the production of porous nanoscale materials. Most strategies rely upon polymer equilibration where diverse morphologies are realized in porous functional materials. This review details how solvent selectivity determines the polymer SDA behaviors, spanning from bulk-type to solution-type. Equilibrating behavior of either type, however, obscures nanostructure cause-and-effect since the resulting sample series convolve multiple spatial variations. Solution-type SDA behaviors include both dynamic and persistent micelles. Persistent micelle templates (PMT) use high solvent selectivity for kinetic entrapment. PMTs enable independent wall thickness control with demonstrated 2 Å precision alterations. Unimodal PMT pore size distributions have spanned …