Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry

PDF

LSU Doctoral Dissertations

Atomic Force Microscopy

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Molecular-Level Studies Of Nanopatterned Biomolecules With Atomic Force Microscopy, Ashley R. Walker May 2024

Molecular-Level Studies Of Nanopatterned Biomolecules With Atomic Force Microscopy, Ashley R. Walker

LSU Doctoral Dissertations

Atomic force microscopy (AFM) is an analytical technique in which a tipped probe is gently scanned across the surface in a raster pattern to generate digital images of a sample at the nanoscale. The AFM instrument has three general operational modes, which are contact, non-contact and tapping-mode, that can be used to examine materials at the atomic level. Single-molecular details of biological molecules and other soft organic materials can be captured with minimal denaturation in either ambient or liquid environments when using tapping-mode AFM. In tapping-mode, the probe is driven to oscillate vertically while the tip is scanned across the …


Self-Assembly Mechanisms Of Organosilanes And Porphyrins Investigated With Scanning Probe Microscopy, Phillip Charles Chambers Ii Nov 2017

Self-Assembly Mechanisms Of Organosilanes And Porphyrins Investigated With Scanning Probe Microscopy, Phillip Charles Chambers Ii

LSU Doctoral Dissertations

This dissertation details the development of new fabrication strategies for the preparation of spatially selective surfaces by combining techniques of particle lithography and scanning probe microscopy (SPM). This combination of lithography and nanoscale surface characterization was applied to study the mechanisms of molecular level surface-assembly of organosilanes and porphyrin on surfaces of Si(111). Particle lithography was used to investigate the surface assembly of 4-chloromethylphenyltrichlorosilane (CMPS) within exposed sites of nanoholes in selected solvents and at selected temperatures to gain insight into the details of self-polymerization. Nanopillars of CMPS were generated under selected conditions of solvent and temperature and characterized with …