Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Astrophysics and Astronomy

Binary Neutron Star Mergers: Testing Ejecta Models For High Mass-Ratios, Allen Murray Aug 2020

Binary Neutron Star Mergers: Testing Ejecta Models For High Mass-Ratios, Allen Murray

The Journal of Purdue Undergraduate Research

Neutron stars are extremely dense stellar corpses which sometimes exist in orbiting pairs known as binary neutron star (BNS) systems. The mass ratio (q) of a BNS system is defined as the mass of the heavier neutron star divided by the mass of the lighter neutron star. Over time the neutron stars will inspiral toward one another and produce a merger event. Although rare, these events can be rich sources of observational data due to their many electromagnetic emissions as well as the gravitational waves they produce. The ability to extract physical information from such observations relies heavily on numerical …


Stability Of Regular Thin Shell Wormholes Supported By Vdw Quintessence, A. Eid Jun 2020

Stability Of Regular Thin Shell Wormholes Supported By Vdw Quintessence, A. Eid

Applications and Applied Mathematics: An International Journal (AAM)

The dynamical equations of motion for a thin shell wormhole from regular black holes that are supported by Van der Waals (VDW) quintessence equation of state (EoS) are constructed, through cut and -paste technique. The linearized stability of regular wormhole is derived. The presences of unstable and stable static solutions with different value of some parameters are analyzed.


Band Extension And Possible Ridge Compression On Europa, Sarah Chinski May 2020

Band Extension And Possible Ridge Compression On Europa, Sarah Chinski

Macalester Journal of Physics and Astronomy

Jupiter's icy moon Europa has captivated and perplexed the scientific community since the discovery of its global liquid water ocean. Over the course of several missions to the Jovian system, high-resolution observations of Europa have determined that there are spreading zones where new crust is created, similar to the mid-ocean spreading tectonic process we observe on Earth. These features, known as bands, have symmetric hills and valleys, indicating brief events of activity where material from the interior is exuded through a central crack, and solidifies on both sides, creating two positive topography. Recently, Europan scientists have been questioning how these …


Discovering New Strong Gravitational Lenses In The Desi Legacy Imaging Surveys, Xiaosheng Huang, Christopher Storfer, A. Gu, V. Ravi, A. Pilon, W. Sheu, R. Venguswamy, S. Bankda, A. Dey, M. Landriau, D. Lang, A. Meisner, J. Moustakas, A. D. Myers, R. Sajith, E. F. Schlafly, D. J. Schlegel May 2020

Discovering New Strong Gravitational Lenses In The Desi Legacy Imaging Surveys, Xiaosheng Huang, Christopher Storfer, A. Gu, V. Ravi, A. Pilon, W. Sheu, R. Venguswamy, S. Bankda, A. Dey, M. Landriau, D. Lang, A. Meisner, J. Moustakas, A. D. Myers, R. Sajith, E. F. Schlafly, D. J. Schlegel

Physics and Astronomy

We have conducted a search for new strong gravitational lensing systems in the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys’ Data Release 8. We use deep residual neural networks, building on previous work presented in Huang et al. (2020). These surveys together cover approximately one third of the sky visible from the northern hemisphere, reaching a z-band AB magnitude of ∼ 22.5. We compile a training sample that consists of known lensing systems as well as non-lenses in the Legacy Surveys and the Dark Energy Survey. After applying our trained neural networks to the survey data, we visually inspect and …


A Numerical Approach To Modeling Submoons And Investigating Stability Regions, Josephine Spiegelberg Jan 2020

A Numerical Approach To Modeling Submoons And Investigating Stability Regions, Josephine Spiegelberg

Honors Program Theses

The recent discovery of the Neptune-sized exomoon candidate Kepler-1625bi (Teachey et al. 2018) has prompted a wave of research into the possibility of such a large satellite hosting its own moons, or submoons. These submoons have a lot in common with moons, and lessons from moon stability calculations can help to understand submoon behavior and stability. Past submoon research has focused on determining stability regions for these submoons using simplified models of the body’s tidal evolution (Reid 1973, Conrad 1985, Kollmeier and Raymond 2019). In order to provide a more detailed understanding of submoon behavior, a Fortran N-Body code was …


Creating A Sample Of Off-Color Galaxies Using Big Data Tools, Christopher Becker Jan 2020

Creating A Sample Of Off-Color Galaxies Using Big Data Tools, Christopher Becker

Honors Program Theses

This thesis begins an investigation into the presence of off-colored galaxies in the Sloan Digital Sky Survey. Through establishing the emergence and history of Astroinformatics, the thesis introduces the concepts surrounding both off-color galaxies and the Big Data tools helpful in analyzing the data to find them. A discussion of initial implementation methods and revised implementation due to difficulties with previous plans follows. Results are presented, with well in excess of 500,000 candidates for off-color galaxies present in the sample. Conclusions are then drawn regarding such a large sample and the implications this may have on the conventional understanding of …


Significance Of Gravitational Nonlinearities On The Dynamics Of Disk Galaxies, Alexandre Deur, Corey Sargent, Balša Terzić Jan 2020

Significance Of Gravitational Nonlinearities On The Dynamics Of Disk Galaxies, Alexandre Deur, Corey Sargent, Balša Terzić

Physics Faculty Publications

The discrepancy between the visible mass in galaxies or galaxy clusters and that inferred from their dynamics is well known. The prevailing solution to this problem is dark matter. Here we show that a different approach, one that conforms to both the current standard model of particle physics and general relativity (GR), explains the recently observed tight correlation between the galactic baryonic mass and the measured accelerations in the galaxy. Using direct calculations based on GR's Lagrangian and parameter-free galactic models, we show that the nonlinear effects of GR make baryonic matter alone sufficient to explain this observation. Our approach …