Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Astrophysics and Astronomy

Sub-Chandrasekhar Type Ia Supernovae Scenarios With Increased Pathways For Neutronization, Fernando Hernan Rivas May 2023

Sub-Chandrasekhar Type Ia Supernovae Scenarios With Increased Pathways For Neutronization, Fernando Hernan Rivas

Doctoral Dissertations

Type Ia supernovae are thermonuclear explosions of white dwarfs (WD), electron-degenerate cores of old intermediate mass stars(under 8$M_{\odot}$). Reaching energies of $10^{51}$\si{\erg}, they outshine whole galaxies as they synthesize and distribute most of the iron group elements (IGE; V, Cr, Mn, Fe, Co, Ni) into the interstellar medium, thus being one of the main agents in cosmic chemical evolution. Also, given their notably homogeneous lightcurves, they form the last step in the cosmic distance ladder outdistancing Cepheid variables by orders of magnitude. Though calibration of said lightcurves is dependent on a high number of confirmed events, the limits of statistical …


Analysis Of A Controlled Approximation For Explicit Integrations Of Stiff Thermonuclear Networks, Nicholas Brey May 2023

Analysis Of A Controlled Approximation For Explicit Integrations Of Stiff Thermonuclear Networks, Nicholas Brey

Masters Theses

The current standard method to solve stiff coupled differential equations relies on implicit integration methods. Explicit methods are generally avoided due to the extremely small and limiting timesteps they allow when the equations are stiff. However, implicit methods are computationally expensive because of the complex calculations that need to be done at each time step. An explicit integration method can do these calculations quicker and, if allowed to take comparable timesteps to the implicit ones, would allow the entire calculation to be done faster. Previous work by Dr. Guidry, Dr. Endeve, Dr. Hix and Dr. Billings has shown that, in …


Expanding Band Parameter Analysis Methods For Hed Meteorites And V-Type Asteroids, Noah Adm Haverkamp Frere May 2021

Expanding Band Parameter Analysis Methods For Hed Meteorites And V-Type Asteroids, Noah Adm Haverkamp Frere

Masters Theses

Vesta and Vesta-like asteroids have been convincingly linked, through visible and near-infrared (VNIR; 0.7 - 2.5 µm [micron]) spectral analysis, to a clan of basaltic achondritic meteorites – howardites, eucrites, and diogenites (HEDs). VNIR reflectance spectra of V-type asteroids and HED meteorites have two absorption features centered near 1 µm (Band I) and 2 µm (Band II) caused primarily by Fe2+ [iron] and Ca2+ [calcium] cations in pyroxene. Previous studies have shown a correlation between the mol% Fs and Wo with the central wavelengths of Band I and Band II, hereafter called Band I Center (BIC) and Band …


Thornado-Hydro: Generalizing Discontinuous Galerkin Methods For A Nuclear Equation Of State For Supernova Hydrodynamics, Brandon Lynn Barker, Eirik Endeve, Anthony Mezzacappa May 2019

Thornado-Hydro: Generalizing Discontinuous Galerkin Methods For A Nuclear Equation Of State For Supernova Hydrodynamics, Brandon Lynn Barker, Eirik Endeve, Anthony Mezzacappa

Chancellor’s Honors Program Projects

No abstract provided.


On The Spin Evolution Of Isolated Pulsars, Oliver Quinn Hamil Aug 2015

On The Spin Evolution Of Isolated Pulsars, Oliver Quinn Hamil

Doctoral Dissertations

Neutron stars are the remnants of supernova explosions, and harbor the densest matter found in the universe. Because of their extreme physical characteristics, neutron stars make superb laboratories from which to study the nature of matter under conditions of extreme density that are not reproducible on Earth. The understanding of QCD matter is of fundamental importance to modern physics, and neutron stars provide a means of probing into the cold, dense region of the QCD phase diagram.

Isolated pulsars are rotating neutron stars that emit beams of electromagnetic radiation into space which appear like lighthouses to observers on Earth. Observations …


The Effects Of Realistic Nuclear Kinetics, Dimensionality, And Resolution On Detonations In Low-Density Type Ia Supernovae Environments, Thomas L. Papatheodore Aug 2015

The Effects Of Realistic Nuclear Kinetics, Dimensionality, And Resolution On Detonations In Low-Density Type Ia Supernovae Environments, Thomas L. Papatheodore

Doctoral Dissertations

Type Ia supernovae are most likely thermonuclear explosions of carbon/oxygen white dwarves in binary stellar systems. These events contribute to the chemical and dynamical evolution of their host galaxies and are essential to our understanding of the evolution of our universe through their use as cosmological distance indicators. Nearly all of the currently favored explosion scenarios for these supernovae involve detonations. However, modeling astrophysical detonations can be complicated by numerical effects related to grid resolution. In addition, the fidelity of the reaction network chosen to evolve the nuclear burning can alter the time and length scales over which the burning …


Graphic Representation Of Exotic Nuclear Shapes In The Pasta Phase Of Matter In Neutron Stars, Mark A. Kaltenborn May 2014

Graphic Representation Of Exotic Nuclear Shapes In The Pasta Phase Of Matter In Neutron Stars, Mark A. Kaltenborn

Chancellor’s Honors Program Projects

No abstract provided.


Three Dimensional Equation Of State For Core-Collapse Supernova Matter, Helena Sofia De Castro Felga Ramos Pais May 2013

Three Dimensional Equation Of State For Core-Collapse Supernova Matter, Helena Sofia De Castro Felga Ramos Pais

Doctoral Dissertations

The core-collapse supernova (CCSN) phenomenon, one of the most explosive events in the Universe, presents a challenge to theoretical astrophysics. Stellar matter in supernovae, experiencing most extreme pressure and temperature, undergoes transformations that cannot be simulated in terrestrial laboratories. Construction of astrophysical models is the only way towards comprehension of CCSN. The key microscopic input into CCSN models is the Equation of State (EoS), connecting the pressure of stellar matter to the energy density and temperature, dependent upon its composition. Of the large variety of forms of CCSN matter, we focus on the transitional region between homogeneous and inhomogeneous phases. …