Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Astrophysics and Astronomy

Long Coherence Times At 300 K For Nitrogen-Vacancy Center Spins In Diamond Grown By Chemical Vapor Deposition, John S. Colton, T. A. Kennedy, J. E. Butler, R. C. Linares, P.J. Doering Nov 2003

Long Coherence Times At 300 K For Nitrogen-Vacancy Center Spins In Diamond Grown By Chemical Vapor Deposition, John S. Colton, T. A. Kennedy, J. E. Butler, R. C. Linares, P.J. Doering

Faculty Publications

Electron-spin-echo experiments reveal phase-memory times as long as 58 μs at 300 K for nitrogen-vacancy centers in chemical vapor deposition (CVD) single crystals. The spins were optically polarized and optically detected. Two high-quality CVD samples were studied. From the current results, it is not clear whether these phase-memory times represent a fundamental limit or are limited by an external source of decoherence.


Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson May 2003

Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson

Pomona Senior Theses

This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands …


Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson May 2003

Steps Toward The Creation Of A Carbon Nanotube Single Electron Transistor, R. Matthew Ferguson

Pomona Senior Theses

This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands …