Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Astrophysics and Astronomy

Extending Core-Collapse Supernova Simulations: From The Onset Of Explosion To Shock Breakout, Michael A. Sandoval Aug 2021

Extending Core-Collapse Supernova Simulations: From The Onset Of Explosion To Shock Breakout, Michael A. Sandoval

Doctoral Dissertations

A core-collapse supernova (CCSN) is the result of a massive star’s core collapsing due to the inability of electron degeneracy pressure to provide sufficient support against gravity. Currently, there is a disconnect between when most three-dimensional CCSN simulations end (seconds) and when the explosion would reach the surface of the star and become visible (hours to days). We present three-dimensional simulations of CCSNe using the FLASH code that follow the progression of the explosion to the stellar surface, starting from neutrino-radiation hydrodynamic simulations of the first seconds performed with the Chimera code. We consider a 9.6-M zero-metallicity progenitor, starting …


Analysis Of 26Al + P Elastic And Inelastic Scattering Reactions And Galactic Abundances Of 26Al, Stephen Todd Pittman Dec 2011

Analysis Of 26Al + P Elastic And Inelastic Scattering Reactions And Galactic Abundances Of 26Al, Stephen Todd Pittman

Doctoral Dissertations

26Al(p,p)26Al and 26Al(p,p’)26Al* scattering reactions were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at the Oak Ridge National Laboratory (ORNL). The purpose of the elastic scattering study was to determine properties of previously uncharacterized 27Si levels above the proton threshold in the energy range E(c.m.) ~ 0.5 - 1.5 MeV and to calculate reaction rates for the 26Al(p,γ[gamma])27Si reaction that destroys 26Al. The inelastic scattering reaction was also evaluated to investigate the reaction that produces the metastable state of 26Al at E(c.m.) = 228 keV, …


Towards Simulations Of Binary Neutron Star Mergers And Core-Collapse Supernovae With Genasis, Reuben Donald Budiardja Aug 2010

Towards Simulations Of Binary Neutron Star Mergers And Core-Collapse Supernovae With Genasis, Reuben Donald Budiardja

Doctoral Dissertations

This dissertation describes the current version of GenASiS and reports recent progress in its development. GenASiS is a new computational astrophysics code built for large-scale and multi-dimensional computer simulations of astrophysical phenomena, with primary emphasis on the simulations of neutron star mergers and core-collapse supernovae. Neutron star mergers are of high interest to the astrophysics community because they should be the prodigious source of gravitation waves and the most promising candidates for gravitational wave detection. Neutron star mergers are also thought to be associated with the production of short-duration, hard-spectral gamma-ray bursts, though the mechanism is not well understood. In …