Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Astrophysics and Astronomy

Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu Dec 2022

Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu

Doctoral Dissertations

The primary focus of this dissertation is to develop a next-generation, state-of-the-art neutrino kinetics capability that will be used in the context of the next-generation, state-of-the-art core-collapse supernova (CCSN) simulation frameworks \thornado\ and \FLASH.\index{CCSN} \thornado\ is a \textbf{t}oolkit for \textbf{h}igh-\textbf{or}der \textbf{n}eutrino-r\textbf{ad}iation hydr\textbf{o}dynamics, which is a collection of modules that can be incorporated into a simulation code/framework, such as \FLASH, together with a nuclear equation of state (EOS)\index{EOS} library, such as the \WeakLib\ EOS tables. The first part of this work extends the \WeakLib\ code to compute neutrino interaction rates from~\cite{Bruenn_1985} and produce corresponding opacity tables.\index{Bruenn 1985} The processes of emission, …


How Do Galaxies Form Their Stars Over Cosmic Time?, Jed H. Mckinney Oct 2022

How Do Galaxies Form Their Stars Over Cosmic Time?, Jed H. Mckinney

Doctoral Dissertations

Galaxies in the past were forming more stars than those today, but the driving force behind this increase in activity remains uncertain. In this thesis I explore the origin of high star-formation rates today and in the past by studying the properties of gas and dust in the cold interstellar medium (ISM) of dusty galaxies over cosmic time. Critically, we do not yet understand how these galaxies could form so many stars. This work began with my discovery of unusual infrared (IR) emission line ratios in the class of dusty galaxies where most of the Universe’s stars were formed. To …


Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh Oct 2022

Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh

Doctoral Dissertations

Hyperspectral imaging has been deployed in earth and planetary remote sensing, and has contributed the development of new methods for monitoring the earth environment and new discoveries in planetary science. It has given scientists and engineers a new way to observe the surface of earth and planetary bodies by measuring the spectroscopic spectrum at a pixel scale. Hyperspectal images require complex processing before practical use. One of the important goals of hyperspectral imaging is to obtain the images of reflectance spectrum. A raw image obtained by hyperspectral remote sensing usually undergoes conversion to a physical quantity representing the intensity of …


Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik Jun 2022

Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik

Doctoral Dissertations

Self-shielding in ton-scale liquid xenon (LXe) detectors presents a unique challenge for calibrating detector response to interactions in the detector's innermost volume. Calibration radioisotopes must be injected directly into the LXe to reach the central volume, where they must either decay away with a short half life or be purified out. We present an overview of, and results from, the prototype source injection system (SIS) developed at the University of Massachusetts Amherst for the LUX-ZEPLIN experiment (LZ). The SIS is designed to refine techniques for the injection and removal of precise activities of various calibration radioisotopes that are useful in …


A New Galactic Wind Model For Cosmological Simulations, Shuiyao Huang Feb 2022

A New Galactic Wind Model For Cosmological Simulations, Shuiyao Huang

Doctoral Dissertations

The propagation and evolution of cold galactic winds in galactic haloes is crucial to galaxy formation models. However, modelling of this process in hydrodynamic simulations of galaxy formation is over-simplified owing to a lack of numerical resolution and often neglects critical physical processes such as hydrodynamic instabilities and thermal conduction. In this thesis, I propose an analytic model, Physically Evolved Winds (PhEW), that calculates the evolution of individual clouds moving supersonically through a uniform ambient medium. The model reproduces predictions from very high resolution cloud-crushing simulations that include isotropic thermal conduction over a wide range of physical conditions. I also …