Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Astrophysics and Astronomy

Solar Modulation Of The Cosmic Ray Intensity And The Measurement Of The Cerenkov Reemission In Nova’S Liquid Scintillator, Philip James Mason Dec 2015

Solar Modulation Of The Cosmic Ray Intensity And The Measurement Of The Cerenkov Reemission In Nova’S Liquid Scintillator, Philip James Mason

Doctoral Dissertations

The NOνA (NuMI Off-axis electron neutrino Appearance) experiment is a long baseline neutrino oscillation experiment at Fermi National Accelerator Laboratory. Its purpose is to observe the oscillation of νμ (muon neutrino) to νe (electron neutrino) and to investigate the neutrino mass hierarchy and CP violation in the neutrino sector. Two detectors have been built for this purpose, a Near Detector 300 feet underground at Fermilab, and a Far Detector, on the surface at Ash River, Minnesota.

The completion of NOνA’s Far Detector in October 2014 enabled not only the recent measurement of neutrino oscillations, but an array of …


The Impact Of Terrestrial Noise On The Detectability And Reconstruction Of Gravitational Wave Signals From Core-Collapse Supernovae, Jessica Mciver Nov 2015

The Impact Of Terrestrial Noise On The Detectability And Reconstruction Of Gravitational Wave Signals From Core-Collapse Supernovae, Jessica Mciver

Doctoral Dissertations

Among of the wide range of potentially interesting astrophysical sources for gravitational wave detectors Advanced LIGO and Advanced Virgo are galactic core-collapse supernovae. Although detectable core-collapse supernovae have a low expected rate (a few per century, or less) these signals would yield a wealth of new physics. Of particular interest is the insight into the explosion mechanism driving core-collapse supernovae that can be gleaned from the reconstructed gravitational wave signal. A well-reconstructed waveform will allow us to assess the likelihood of different explosion models, perform model selection, and potentially map unexpected features to new physics. This dissertation presents a series …


An Empirical Approach To Understanding Of Star Formation In Dark Matter Halos, Zhankui Lu Nov 2015

An Empirical Approach To Understanding Of Star Formation In Dark Matter Halos, Zhankui Lu

Doctoral Dissertations

We present a data-driven approach to understand the star formation in dark matter halos over cosmic time. With a simple empirical model and advanced tools for Bayesian inference, we try to constrain how galaxies have assembled their stars across cosmic time using stellar mass functions (SMFs) and the luminosity function of cluster galaxies. The key ingredients of the empirical model include dark halo merger trees and a generic function that links star formation rate (SFR) to the host halos. We found a new characteristic redshift zc ~ 2 above which the SFR in low mass halos < 1011 solar mass …


Gravitational Wave Astrophysics: Instrumentation, Detector Characterization, And A Search For Gravitational Signals From Gamma-Ray Bursts, Daniel Hoak Nov 2015

Gravitational Wave Astrophysics: Instrumentation, Detector Characterization, And A Search For Gravitational Signals From Gamma-Ray Bursts, Daniel Hoak

Doctoral Dissertations

In the coming years, the second generation of interferometric gravitational wave detectors are widely expected to observe the gravitational radiation emitted by compact, energetic events in the nearby universe. The field of gravitational wave astrophysics has grown into a large international endeavor with a global network of kilometer-scale observatories. The work presented in this thesis spans the field, from optical metrology, to instrument commissioning, to detector characterization and data analysis. The principal results are a method for the precise characterization of optical cavities, the commissioning of the advanced LIGO Output Mode Cleaner at the Hanford observatory, and a search for …


Exact Solutions In Gravity: A Journey Through Spacetime With The Kerr-Schild Ansatz, Benjamin Ett Nov 2015

Exact Solutions In Gravity: A Journey Through Spacetime With The Kerr-Schild Ansatz, Benjamin Ett

Doctoral Dissertations

The Kerr-Schild metric ansatz can be expressed in the form $g_{ab} = \gbar_{ab}+\lambda k_ak_b$, where $\gbar_{ab}$ is a background metric satisfying Einstein's equations, $k_a$ is a null-vector, and $\lambda$ is a free parameter. It was discovered in 1963 while searching for the elusive rotating black hole solutions to Einstein's equations, fifty years after the static solution was found and Einstein first formulated his theory of general relativity. While the ansatz has proved an excellent tool in the search for new exact solutions since then, its scope is limited, particularly with respect to higher dimensional theories. In this thesis, we present …


On The Spin Evolution Of Isolated Pulsars, Oliver Quinn Hamil Aug 2015

On The Spin Evolution Of Isolated Pulsars, Oliver Quinn Hamil

Doctoral Dissertations

Neutron stars are the remnants of supernova explosions, and harbor the densest matter found in the universe. Because of their extreme physical characteristics, neutron stars make superb laboratories from which to study the nature of matter under conditions of extreme density that are not reproducible on Earth. The understanding of QCD matter is of fundamental importance to modern physics, and neutron stars provide a means of probing into the cold, dense region of the QCD phase diagram.

Isolated pulsars are rotating neutron stars that emit beams of electromagnetic radiation into space which appear like lighthouses to observers on Earth. Observations …


The Effects Of Realistic Nuclear Kinetics, Dimensionality, And Resolution On Detonations In Low-Density Type Ia Supernovae Environments, Thomas L. Papatheodore Aug 2015

The Effects Of Realistic Nuclear Kinetics, Dimensionality, And Resolution On Detonations In Low-Density Type Ia Supernovae Environments, Thomas L. Papatheodore

Doctoral Dissertations

Type Ia supernovae are most likely thermonuclear explosions of carbon/oxygen white dwarves in binary stellar systems. These events contribute to the chemical and dynamical evolution of their host galaxies and are essential to our understanding of the evolution of our universe through their use as cosmological distance indicators. Nearly all of the currently favored explosion scenarios for these supernovae involve detonations. However, modeling astrophysical detonations can be complicated by numerical effects related to grid resolution. In addition, the fidelity of the reaction network chosen to evolve the nuclear burning can alter the time and length scales over which the burning …


Nucleosynthesis In Self-Consistent Core-Collapse Supernova Models Using Multidimensional Chimera Simulations, James Austin Harris Aug 2015

Nucleosynthesis In Self-Consistent Core-Collapse Supernova Models Using Multidimensional Chimera Simulations, James Austin Harris

Doctoral Dissertations

Observations of nuclear abundances in core-collapse supernova (CCSN) ejecta, highlighted by γ-ray [gamma-ray] observations of the 44Ti [titanium-44] spatial distribution in the nearby supernova remnants Cassiopeia A and SN 1987A, allow nucleosynthesis calculations to place powerful constraints on conditions deep in the interiors of supernovae and their progenitor stars. This ability to probe where direct observations cannot makes such calculations an invaluable tool for understanding the CCSN mechanism. Unfortunately, despite knowing for two decades that supernovae are intrinsically multi-dimensional events, discussions of CCSN nucleosynthesis have been predominantly based on spherically symmetric (1D) models, which employ a contrived energy source …


Insights Into Planetesimal Evolution: Petrological Investigations Of Regolithic Howardites And Carbonaceous Chondrite Impact Melts, Nicole Gabriel Lunning Aug 2015

Insights Into Planetesimal Evolution: Petrological Investigations Of Regolithic Howardites And Carbonaceous Chondrite Impact Melts, Nicole Gabriel Lunning

Doctoral Dissertations

Asteroidal meteorites are the only available geologic samples from the early part of our solar system’s history. These meteorites contain evidence regarding how the earliest protoplanetary bodies formed and evolved. I use petrological and geochemical techniques to investigate the evolution of these early planetesimals, focusing on two meteorite types: Howardites, which are brecciated samples of a differentiated parent body (thought to be the asteroid 4 Vesta), and CV chondrites, which are primitive chondrites that have not undergone differentiation on their parent body.

Quantitative petrological analysis and characterization of paired regolithic (solar wind-rich) howardites indicate that this large sample of the …