Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Astrophysics and Astronomy

The Study Of Nuclear Structure Of Neutron-Rich 81ge And Its Contribution In The R-Process Via The Neutron Transfer Reaction 80ge(D,P), Sunghoon Ahn Aug 2013

The Study Of Nuclear Structure Of Neutron-Rich 81ge And Its Contribution In The R-Process Via The Neutron Transfer Reaction 80ge(D,P), Sunghoon Ahn

Doctoral Dissertations

The study of low-lying levels of nuclei near closed shells not only elucidates the evolution of nuclear shell structure far from stability, but also affects estimates of heavy element nucleosynthesis in supernova explosions. Especially, the properties of the low-lying levels in 81Ge[Germanium 81] are important because the sensitivity study of the r-process pointed out that the properties of the nucleus can affect the final bundance pattern. Also, the spins and parities measurements of the states are essential to understand the shape coexistence in odd-mass N = 49 isotones.

This work describes the study of the odd-mass N = …


Nature And Degree Of Aqueous Alteration Of Outer Main Belt Asteroids And Cm And Ci Carbonaceous Chondrites, Driss Takir May 2013

Nature And Degree Of Aqueous Alteration Of Outer Main Belt Asteroids And Cm And Ci Carbonaceous Chondrites, Driss Takir

Doctoral Dissertations

CM (Mighei-like) and CI (Ivuna-like) carbonaceous chondrites are primitive meteorites that consist of some of the most pristine matter known in the Solar System. They are thought to be genetically related to outer Main Belt asteroids (C-, D-, G-, F-, T-, and B-types) that span the 2.5 < a < 4.0 AU region. They are also thought to be the source that might have delivered water and organics to terrestrial planets during their accretion. The goal of this dissertation is to develop reliable 3-µm [micron] spectral indicators that can place constraints on the degree and location of aqueous alteration in the outer Main Belt region, and on the nature of phyllosilicate mineralogy on the surface of these asteroids. To that end, we have undertaken combined petrologic, geochemical, and spectroscopic analyses of CM and CI chondrites and outer Main Belt asteroids. Using the SpeX spectrograph/imager at NASA Infrared Telescope Facility (IRTF), we measured near-infrared (NIR: 0.7-4.0 µm) spectra of 40 outer Main Belt asteroids that allowed the identification of four 3-µm spectral groups, each of which presumably reflects a distinct surface mineralogy. We also measured spectra of 9 CM chondrites (in addition to the CI chondrite Ivuna) in the laboratory under asteroid-like conditions. These measurements revealed three spectral groups of CM chondrites, all of which are distinct from the spectrum of Ivuna on the basis of the 3-μm band center and shape of spectra, showing that distinct parent body aqueous alteration environments experienced by different carbonaceous chondrites can be distinguished using reflectance spectroscopy. All CM and CI chondrites in the present study are found to be similar to the group of asteroids that are located in the 2.5 < a < 3.3 AU region and exhibit a sharp 3-µm feature, attributed to OH-stretching in hydrated minerals. However, no meteorite match was found for asteroids with a rounded 3-µm feature that are located farther from the Sun (3.0 < a < 4.0 AU), or for groups with distinctive spectra like 1 Ceres or 52 Europa.


Three Dimensional Equation Of State For Core-Collapse Supernova Matter, Helena Sofia De Castro Felga Ramos Pais May 2013

Three Dimensional Equation Of State For Core-Collapse Supernova Matter, Helena Sofia De Castro Felga Ramos Pais

Doctoral Dissertations

The core-collapse supernova (CCSN) phenomenon, one of the most explosive events in the Universe, presents a challenge to theoretical astrophysics. Stellar matter in supernovae, experiencing most extreme pressure and temperature, undergoes transformations that cannot be simulated in terrestrial laboratories. Construction of astrophysical models is the only way towards comprehension of CCSN. The key microscopic input into CCSN models is the Equation of State (EoS), connecting the pressure of stellar matter to the energy density and temperature, dependent upon its composition. Of the large variety of forms of CCSN matter, we focus on the transitional region between homogeneous and inhomogeneous phases. …


Martian Dune Fields: Aeolian Activity, Morphology, Sediment Pathways, And Provenance, Matthew Chojnacki May 2013

Martian Dune Fields: Aeolian Activity, Morphology, Sediment Pathways, And Provenance, Matthew Chojnacki

Doctoral Dissertations

Wind has likely been the dominant geologic agent for most of Mars’ history. The wide-spread nature of sand dunes there shows that near-surface winds have commonly interacted with plentiful mobile sediments. Early studies of these dunes suggested minimal activity, dominantly unidirectional simple dune morphologies, and little variations in basaltic sand compositions. This dissertation examines martian sand dunes and aeolian systems, in terms of their activity, morphologies, thermophysical properties, sand compositions, geologic contexts, and source-lithologies using new higher-resolution orbital data. Although previous evidence for contemporary dune activity has been limited, results presented in Chapter II show substantial activity in Endeavour Crater, …