Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Astrophysics and Astronomy

Sub-Chandrasekhar Type Ia Supernovae Scenarios With Increased Pathways For Neutronization, Fernando Hernan Rivas May 2023

Sub-Chandrasekhar Type Ia Supernovae Scenarios With Increased Pathways For Neutronization, Fernando Hernan Rivas

Doctoral Dissertations

Type Ia supernovae are thermonuclear explosions of white dwarfs (WD), electron-degenerate cores of old intermediate mass stars(under 8$M_{\odot}$). Reaching energies of $10^{51}$\si{\erg}, they outshine whole galaxies as they synthesize and distribute most of the iron group elements (IGE; V, Cr, Mn, Fe, Co, Ni) into the interstellar medium, thus being one of the main agents in cosmic chemical evolution. Also, given their notably homogeneous lightcurves, they form the last step in the cosmic distance ladder outdistancing Cepheid variables by orders of magnitude. Though calibration of said lightcurves is dependent on a high number of confirmed events, the limits of statistical …


Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu Dec 2022

Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu

Doctoral Dissertations

The primary focus of this dissertation is to develop a next-generation, state-of-the-art neutrino kinetics capability that will be used in the context of the next-generation, state-of-the-art core-collapse supernova (CCSN) simulation frameworks \thornado\ and \FLASH.\index{CCSN} \thornado\ is a \textbf{t}oolkit for \textbf{h}igh-\textbf{or}der \textbf{n}eutrino-r\textbf{ad}iation hydr\textbf{o}dynamics, which is a collection of modules that can be incorporated into a simulation code/framework, such as \FLASH, together with a nuclear equation of state (EOS)\index{EOS} library, such as the \WeakLib\ EOS tables. The first part of this work extends the \WeakLib\ code to compute neutrino interaction rates from~\cite{Bruenn_1985} and produce corresponding opacity tables.\index{Bruenn 1985} The processes of emission, …


Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik Jun 2022

Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik

Doctoral Dissertations

Self-shielding in ton-scale liquid xenon (LXe) detectors presents a unique challenge for calibrating detector response to interactions in the detector's innermost volume. Calibration radioisotopes must be injected directly into the LXe to reach the central volume, where they must either decay away with a short half life or be purified out. We present an overview of, and results from, the prototype source injection system (SIS) developed at the University of Massachusetts Amherst for the LUX-ZEPLIN experiment (LZ). The SIS is designed to refine techniques for the injection and removal of precise activities of various calibration radioisotopes that are useful in …


Study Of 134in Beta-Delayed Neutron Emission And Development Of A New Generation Neutron Detector, Joseph Heideman May 2021

Study Of 134in Beta-Delayed Neutron Emission And Development Of A New Generation Neutron Detector, Joseph Heideman

Doctoral Dissertations

Beta-delayed neutron emission in very neutron-rich nuclei plays an essential role in nuclear structure and the understanding of the astrophysical r-process. A complete description of this process requires knowledge of both steps, beta decay and neutron emission. A leading theory poses the intermediate daughter nucleus to behave as a compound nucleus. The conditions for beta-delayed neutron emission of 134In are not well described by the assumptions in the neutron pandemonium hypothesis, therein providing a unique case to this process due to the proximity to 132Sn. Single-particle states in 133Sn obvserved after neutron emission have dissimilar shell occupancy compared to neutron-hole …


Probability Distribution Of Equations Of State For Astrophysical Simulations, Xingfu Du Aug 2020

Probability Distribution Of Equations Of State For Astrophysical Simulations, Xingfu Du

Doctoral Dissertations

The detection of gravitational wave during the neutron star merger event GW170817 greatly enhanced our ability to probe the interiors of neutron stars. Future measurements of similar events will put further constraints to the equation of state (EOS) of nuclear matter. Also, uncertainties in the EOS create variations in the results of astrophysical simulations of core-collapse supernovae and neutron star mergers. In order to quantify the uncertainties, we construct a probability distribution of equations of state (EOSs). We create a new EOS which respects experimental, observational and theoretical constraints on the nature of matter in various density and temperature regimes. …


Alpha Radiation Studies And Related Backgrounds In The Darkside-50 Detector, Alissa Monte Oct 2018

Alpha Radiation Studies And Related Backgrounds In The Darkside-50 Detector, Alissa Monte

Doctoral Dissertations

DarkSide-50 is the current phase of the DarkSide direct dark matter search program, operating underground at the Laboratori Nazionali del Gran Sasso in Italy. The detector is a dual-phase argon Time Projection Chamber (TPC), designed for direct detection of Weakly Interacting Massive Particles (WIMPs), and housed within a veto system of liquid scintillator and water Cherenkov detectors. Since switching to a target of low radioactivity argon extracted from underground sources in April 2015, the background is no longer dominated by naturally occurring 39Ar. However, alpha backgrounds from radon and its daughters remain, both from the liquid argon bulk and internal …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Production Of Cosmological Observables During The Inflationary Epoch, Cody Goolsby-Cole Nov 2017

Production Of Cosmological Observables During The Inflationary Epoch, Cody Goolsby-Cole

Doctoral Dissertations

This dissertation proposal explores the production of present day cosmological observables which might have been produced during the inflationary era. The first observable is the current net electric charge of our observable universe produced by charge fluctuations during inflation. Next, we examine the possibility of a signal in the primordial gravitational wave power spectrum produced by a scalar field with a time dependent mass. Finally, we examine primordial magnetic fields produced during inflation through the Ratra model coupling with the Schwinger effect.


Remote Neutron Spectroscopy On Mars, Christopher Gayle Tate May 2017

Remote Neutron Spectroscopy On Mars, Christopher Gayle Tate

Doctoral Dissertations

Remote neutron spectroscopy is an important technique in planetary science that allows for classification of the amount of light elements in a planetary regolith. It is especially suited for studying hydrogen abundances and elements with high thermal neutron absorption cross sections in the top ~1 meter of regolith. The Mars Science Laboratory rover Curiosity carries the first rover based neutron spectrometer Dynamic Albedo of Neutrons (DAN) in Gale crater, Mars. As the DAN instrument operates in passive mode, it is sensitive to neutrons produced through Galactic Cosmic Ray interactions and neutrons generated by the rover's Multi-Mission Radioisotope Thermoelectric Generator. In …


Spectroscopic And Spectro-Astrometric Analysis Of T Tauri Stars, Logan Ryan Brown Jan 2016

Spectroscopic And Spectro-Astrometric Analysis Of T Tauri Stars, Logan Ryan Brown

Doctoral Dissertations

"To understand our own solar origins, we must investigate the composition of the protoplanetary disk from which the solar system formed. To infer this, we study analogs to the early solar system called T Tauri stars. These objects are low-mass, pre-main sequence stars surrounded by circumstellar disks of material from which planets are believed to form. We present high-resolution, near-infrared spectroscopic data for the T Tauri stars DR Tau and AA Tau using NIRSPEC at the Keck II telescope. For DR Tau, a spectro-astrometric analysis was performed, obtaining sub-seeing spatial information on water emission. Alongside a disk model, we constrained …


Solar Modulation Of The Cosmic Ray Intensity And The Measurement Of The Cerenkov Reemission In Nova’S Liquid Scintillator, Philip James Mason Dec 2015

Solar Modulation Of The Cosmic Ray Intensity And The Measurement Of The Cerenkov Reemission In Nova’S Liquid Scintillator, Philip James Mason

Doctoral Dissertations

The NOνA (NuMI Off-axis electron neutrino Appearance) experiment is a long baseline neutrino oscillation experiment at Fermi National Accelerator Laboratory. Its purpose is to observe the oscillation of νμ (muon neutrino) to νe (electron neutrino) and to investigate the neutrino mass hierarchy and CP violation in the neutrino sector. Two detectors have been built for this purpose, a Near Detector 300 feet underground at Fermilab, and a Far Detector, on the surface at Ash River, Minnesota.

The completion of NOνA’s Far Detector in October 2014 enabled not only the recent measurement of neutrino oscillations, but an array of …


Gravitational Wave Astrophysics: Instrumentation, Detector Characterization, And A Search For Gravitational Signals From Gamma-Ray Bursts, Daniel Hoak Nov 2015

Gravitational Wave Astrophysics: Instrumentation, Detector Characterization, And A Search For Gravitational Signals From Gamma-Ray Bursts, Daniel Hoak

Doctoral Dissertations

In the coming years, the second generation of interferometric gravitational wave detectors are widely expected to observe the gravitational radiation emitted by compact, energetic events in the nearby universe. The field of gravitational wave astrophysics has grown into a large international endeavor with a global network of kilometer-scale observatories. The work presented in this thesis spans the field, from optical metrology, to instrument commissioning, to detector characterization and data analysis. The principal results are a method for the precise characterization of optical cavities, the commissioning of the advanced LIGO Output Mode Cleaner at the Hanford observatory, and a search for …


Exact Solutions In Gravity: A Journey Through Spacetime With The Kerr-Schild Ansatz, Benjamin Ett Nov 2015

Exact Solutions In Gravity: A Journey Through Spacetime With The Kerr-Schild Ansatz, Benjamin Ett

Doctoral Dissertations

The Kerr-Schild metric ansatz can be expressed in the form $g_{ab} = \gbar_{ab}+\lambda k_ak_b$, where $\gbar_{ab}$ is a background metric satisfying Einstein's equations, $k_a$ is a null-vector, and $\lambda$ is a free parameter. It was discovered in 1963 while searching for the elusive rotating black hole solutions to Einstein's equations, fifty years after the static solution was found and Einstein first formulated his theory of general relativity. While the ansatz has proved an excellent tool in the search for new exact solutions since then, its scope is limited, particularly with respect to higher dimensional theories. In this thesis, we present …


On The Spin Evolution Of Isolated Pulsars, Oliver Quinn Hamil Aug 2015

On The Spin Evolution Of Isolated Pulsars, Oliver Quinn Hamil

Doctoral Dissertations

Neutron stars are the remnants of supernova explosions, and harbor the densest matter found in the universe. Because of their extreme physical characteristics, neutron stars make superb laboratories from which to study the nature of matter under conditions of extreme density that are not reproducible on Earth. The understanding of QCD matter is of fundamental importance to modern physics, and neutron stars provide a means of probing into the cold, dense region of the QCD phase diagram.

Isolated pulsars are rotating neutron stars that emit beams of electromagnetic radiation into space which appear like lighthouses to observers on Earth. Observations …


Nucleosynthesis In Self-Consistent Core-Collapse Supernova Models Using Multidimensional Chimera Simulations, James Austin Harris Aug 2015

Nucleosynthesis In Self-Consistent Core-Collapse Supernova Models Using Multidimensional Chimera Simulations, James Austin Harris

Doctoral Dissertations

Observations of nuclear abundances in core-collapse supernova (CCSN) ejecta, highlighted by γ-ray [gamma-ray] observations of the 44Ti [titanium-44] spatial distribution in the nearby supernova remnants Cassiopeia A and SN 1987A, allow nucleosynthesis calculations to place powerful constraints on conditions deep in the interiors of supernovae and their progenitor stars. This ability to probe where direct observations cannot makes such calculations an invaluable tool for understanding the CCSN mechanism. Unfortunately, despite knowing for two decades that supernovae are intrinsically multi-dimensional events, discussions of CCSN nucleosynthesis have been predominantly based on spherically symmetric (1D) models, which employ a contrived energy source …


Direct Measurement Of The Pp Solar Neutrino Interaction Rate In Borexino, Keith Otis Aug 2014

Direct Measurement Of The Pp Solar Neutrino Interaction Rate In Borexino, Keith Otis

Doctoral Dissertations

This dissertation presents the first direct detection of pp solar neutrinos within Borexino, the underground liquid-scintilator detector located at the Gran Sasso National Labratory(LNGS) in Italy, designed to measure the interaction of neutrinos through neutrino-electron elastic scattering. The rate of scattering in Borexino from the pp solar neutrino spectrum is measured to be 155 +/- 16(stat) +/- 13(sys) counts per day per 100 tonnes. With this measurement we are able to rule out the no oscillation hypothesis at the 2-sigma C.L. and the results agree with Standard Solar Model predictions within 1.1-sigma. These neutrinos are from the keystone proton-proton fusion …


The Study Of Nuclear Structure Of Neutron-Rich 81ge And Its Contribution In The R-Process Via The Neutron Transfer Reaction 80ge(D,P), Sunghoon Ahn Aug 2013

The Study Of Nuclear Structure Of Neutron-Rich 81ge And Its Contribution In The R-Process Via The Neutron Transfer Reaction 80ge(D,P), Sunghoon Ahn

Doctoral Dissertations

The study of low-lying levels of nuclei near closed shells not only elucidates the evolution of nuclear shell structure far from stability, but also affects estimates of heavy element nucleosynthesis in supernova explosions. Especially, the properties of the low-lying levels in 81Ge[Germanium 81] are important because the sensitivity study of the r-process pointed out that the properties of the nucleus can affect the final bundance pattern. Also, the spins and parities measurements of the states are essential to understand the shape coexistence in odd-mass N = 49 isotones.

This work describes the study of the odd-mass N = …


Analysis Of 26Al + P Elastic And Inelastic Scattering Reactions And Galactic Abundances Of 26Al, Stephen Todd Pittman Dec 2011

Analysis Of 26Al + P Elastic And Inelastic Scattering Reactions And Galactic Abundances Of 26Al, Stephen Todd Pittman

Doctoral Dissertations

26Al(p,p)26Al and 26Al(p,p’)26Al* scattering reactions were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at the Oak Ridge National Laboratory (ORNL). The purpose of the elastic scattering study was to determine properties of previously uncharacterized 27Si levels above the proton threshold in the energy range E(c.m.) ~ 0.5 - 1.5 MeV and to calculate reaction rates for the 26Al(p,γ[gamma])27Si reaction that destroys 26Al. The inelastic scattering reaction was also evaluated to investigate the reaction that produces the metastable state of 26Al at E(c.m.) = 228 keV, …


Towards Simulations Of Binary Neutron Star Mergers And Core-Collapse Supernovae With Genasis, Reuben Donald Budiardja Aug 2010

Towards Simulations Of Binary Neutron Star Mergers And Core-Collapse Supernovae With Genasis, Reuben Donald Budiardja

Doctoral Dissertations

This dissertation describes the current version of GenASiS and reports recent progress in its development. GenASiS is a new computational astrophysics code built for large-scale and multi-dimensional computer simulations of astrophysical phenomena, with primary emphasis on the simulations of neutron star mergers and core-collapse supernovae. Neutron star mergers are of high interest to the astrophysics community because they should be the prodigious source of gravitation waves and the most promising candidates for gravitational wave detection. Neutron star mergers are also thought to be associated with the production of short-duration, hard-spectral gamma-ray bursts, though the mechanism is not well understood. In …