Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Discipline
Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 6567

Full-Text Articles in Astrophysics and Astronomy

On The Impact Of Geospace Weather On The Occurrence Of M7.8/M7.5 Earthquakes On 6 February 2023 (Turkey), Possibly Associated With The Geomagnetic Storm Of 7 November 2022, Dimitar Ouzounov, Galina Khachikyan Jun 2024

On The Impact Of Geospace Weather On The Occurrence Of M7.8/M7.5 Earthquakes On 6 February 2023 (Turkey), Possibly Associated With The Geomagnetic Storm Of 7 November 2022, Dimitar Ouzounov, Galina Khachikyan

Mathematics, Physics, and Computer Science Faculty Articles and Research

A joint analysis of solar wind, geomagnetic field, and earthquake catalog data showed that before the catastrophic M = 7.8 and M = 7.5 Kahramanmaras earthquake sequence on 6 February 2023, a closed strong magnetic storm occurred on 7 November 2022, SYM/H = −117 nT. The storm started at 08:04 UT. At this time, the high-latitudinal part of Turkey’s longitudinal region of future epicenters was located under the polar cusp, where the solar wind plasma would directly access the Earth’s environment. The time delay between storm onset and earthquake occurrence was ~91 days. We analyzed all seven strong (M7+) earthquakes …


Classification Of Major Solar Flares From Extremely Imbalanced Multivariate Time Series Data Using Minimally Random Convolutional Kernel Transform, Kartik Saini, Khaznah Alshammari, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi May 2024

Classification Of Major Solar Flares From Extremely Imbalanced Multivariate Time Series Data Using Minimally Random Convolutional Kernel Transform, Kartik Saini, Khaznah Alshammari, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi

Computer Science Faculty and Staff Publications

Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence …


Sunyaev-Zeldovich Effect In The Intra-Cluster Medium, Nathan Fronk May 2024

Sunyaev-Zeldovich Effect In The Intra-Cluster Medium, Nathan Fronk

Senior Seminars and Capstones

This paper covers the Sunyaev-Zeldovich effect, it’s derivation, and it’s applications in astronomy. The effect is a result of inverse Compton scattering in a cloud of hot charged particles, causing an increase in the temperature of the the cosmic microwave background radiation passing through the cloud. This change in temperature can be measured, and used to calculate the physical properties of the structure in question. This paper focuses on the a method used by Adam et al. (2017) to find a temperature map of the intra-cluster medium.


Remnant Polarization And Structural Arrangement In P(Vdf-Trfe) Electrospun Fiber Meshes Affect Osteogenic Differentiation Of Human Mesenchymal Stromal Cells, Bahareh Azimi, Massimiliano Labardi, Mohammad Sajad Sorayani Bafqi, Teresa Macchi, Claudio Ricci, Veronica Carnicelli, Lorenzo Scarpelli, Istiak Hussain, Francesca Matino, Mohammed Uddin May 2024

Remnant Polarization And Structural Arrangement In P(Vdf-Trfe) Electrospun Fiber Meshes Affect Osteogenic Differentiation Of Human Mesenchymal Stromal Cells, Bahareh Azimi, Massimiliano Labardi, Mohammad Sajad Sorayani Bafqi, Teresa Macchi, Claudio Ricci, Veronica Carnicelli, Lorenzo Scarpelli, Istiak Hussain, Francesca Matino, Mohammed Uddin

Physics and Astronomy Faculty Publications and Presentations

Highlights

  • The type of solvent had noticeable effects on morphology and piezoelectric properties of P(VDF-TrFE) electrospun fibers.

  • Using MEK as a solvent and specific environmental conditions led to the obtainment of surface nanopores.

  • Uniaxially aligned fibers exhibited higher β phase and mechanical properties than random ones.

  • Randomly oriented fibers had higher remnant piezoelectric properties (Vout, d31 piezoelectric coefficient) than aligned ones.

  • Human mesenchymal stem cells cultured on randomly oriented fibers showed an accelerated osteogenic differentiation.

Abstract

Many tissues and cells are influenced by mechano-electric stimulation, thus the application of piezoelectric materials has recently received considerable attention in tissue engineering. …


Modeling An Extra Planet's Effects On Earth, Emily Simpson Apr 2024

Modeling An Extra Planet's Effects On Earth, Emily Simpson

Aerospace, Physics, and Space Science Student Publications

Orbital dynamics play a crucial role in determining the habitability of exoplanets, and many models have been developed to study the dynamical evolution of broader planetary system structure. To further investigate the implications this has regarding planetary habitability, this project simulated the evolution of the Solar System with an additional planet orbiting in place of the Asteroid Belt using the Gravitational Rigid-body InTegrator (GRIT) package. 21 total simulations were run for 100,000 years with varying values for the extra planet’s mass (from 0.01 to 10 Earth masses) and orbital parameters (based on the 4 most massive asteroids in the Asteroid …


A Search For Intermediate-Mass Black Holes In Compact Stellar Systems Through Optical Emissions From Tidal Disruption Events, Richard T. Pomeroy, Mark A. Norris Apr 2024

A Search For Intermediate-Mass Black Holes In Compact Stellar Systems Through Optical Emissions From Tidal Disruption Events, Richard T. Pomeroy, Mark A. Norris

Physics and Astronomy Faculty Publications and Presentations

Intermediate-mass black holes (IMBH) are expected to exist in globular clusters (GCs) and compact stellar systems (CSS) in general, but none have been conclusively detected. Tidal disruption events (TDEs), where a star is tidally disrupted by the gravitational field of a black hole, have been observed to occur around the supermassive black holes (SMBH) found at the centres of galaxies, and should also arise around IMBHs, especially in the dense stellar cores of CSS's. However, to date none have been observed in such environments. Using data from the Zwicky Transient Facility (ZTF) we search for TDEs associated with CSS, but …


The Jesuit Tradition Of Astronomy At Holy Cross, Sarah Campbell M.A., M.S.I.S. Apr 2024

The Jesuit Tradition Of Astronomy At Holy Cross, Sarah Campbell M.A., M.S.I.S.

Staff publications

This paper summarizes the study of astronomy and related fields as part of the curriculum at the College of the Holy Cross. It briefly profiles four Jesuit priests who were associated with Holy Cross and made significant contributions to the study of astronomy, solar physics and other scientific disciplines. The history of a campus observatory is briefly described as well.

This paper was presented an event sponsored by the Holy Cross Libraries to commemmorate the solar exclipse which occurred April 8. 2024.


Search For Extreme Mass Ratio Inspirals Using Particle Swarm Optimization And Reduced Dimensionality Likelihoods, Xiao-Bo Zou, Soumya Mohanty, Hong-Gang Luo, Yu-Xiao Liu Apr 2024

Search For Extreme Mass Ratio Inspirals Using Particle Swarm Optimization And Reduced Dimensionality Likelihoods, Xiao-Bo Zou, Soumya Mohanty, Hong-Gang Luo, Yu-Xiao Liu

Physics and Astronomy Faculty Publications and Presentations

Extreme-mass-ratio inspirals (EMRIs) are significant observational targets for spaceborne gravitational wave detectors, namely, LISA, Taiji, and Tianqin, which involve the inspiral of stellar-mass compact objects into massive black holes (MBHs) with a mass range of approximately 104 ∼107𝑀⊙ . EMRIs are estimated to produce long-lived gravitational wave signals with more than 105 cycles before plunge, making them an ideal laboratory for exploring the strong-gravity properties of the spacetimes around the MBHs, stellar dynamics in galactic nuclei, and properties of the MBHs itself. However, the complexity of the waveform model, which involves the superposition of multiple harmonics, as well as the …


Reflectance Spectroscopy Datasets For The Validation Of Tanager, Kristiana Lapo, Kathleen Hoza, Sammy Theuer, Melissa S. Rice Apr 2024

Reflectance Spectroscopy Datasets For The Validation Of Tanager, Kristiana Lapo, Kathleen Hoza, Sammy Theuer, Melissa S. Rice

Geology Faculty Publications

The Three-Axis N-sample Automated Goniometer for Evaluating Reflectance (TANAGER) is a custom goniometer designed to rapidly acquire spectra of natural rock surfaces across the full scattering hemisphere. TANAGER interfaces with a Malvern Panalytical ASD Fieldspec 4 Hi-Res reflectance spectrometer to collect data from 350-2500 nm at a range of incidence, emission and azimuth angles. To validate the accuracy and repeatability of data collected with TANAGER - and to characterize any instrument noise, artifacts or sample heating effects - we collected spectra from three categories of targets: (1) powdered calcium sulfate (anhydrite), (2) naturally weathered basalt surfaces, and (3) color calibration …


Phys 401/801 Apr 2024

Phys 401/801

Department of Physics and Astronomy: Syllabi

No abstract provided.


Phys 812 Apr 2024

Phys 812

Department of Physics and Astronomy: Syllabi

No abstract provided.


Phys 142 Apr 2024

Phys 142

Department of Physics and Astronomy: Syllabi

No abstract provided.


Phys 211h Apr 2024

Phys 211h

Department of Physics and Astronomy: Syllabi

No abstract provided.


Phys 918 Apr 2024

Phys 918

Department of Physics and Astronomy: Syllabi

No abstract provided.


Phys 926 Apr 2024

Phys 926

Department of Physics and Astronomy: Syllabi

No abstract provided.


Reevaluating The Origin Of Detectable Cataclysmic Variables In Globular Clusters: Testing The Importance Of Dynamics, Liliana Rivera Sandoval, Diogo Belloni, Miriam Ramos Arevalo Apr 2024

Reevaluating The Origin Of Detectable Cataclysmic Variables In Globular Clusters: Testing The Importance Of Dynamics, Liliana Rivera Sandoval, Diogo Belloni, Miriam Ramos Arevalo

Physics and Astronomy Faculty Publications and Presentations

Based on the current detectable cataclysmic variable (CV) population in Galactic globular clusters (GCs), we show that there is not a clear relation between the number of sources per unit of mass and the stellar encounter rate, the cluster mass, or the cluster central density. If any, only in the case of core-collapsed GCs could there be an anticorrelation with the stellar encounter rate. Our findings contrast with previous studies where clear positive correlations were identified. Our results suggest that correlations between faint X-ray sources, from which often conclusions for the CV population are drawn, and the GC parameters considered …


A Joint Fermi-Gbm And Swift-Bat Analysis Of Gravitational-Wave Candidates From The Third Gravitational-Wave Observing Run, C. Fletcher, J. Wood, R. Hamburg, Michael G. Benjamin, Teviet Creighton, Mario C. Diaz, Francisco Llamas, Soma Mukherjee, Gaukhar Nurbek, Volker Quetschke, Wenhui Wang Mar 2024

A Joint Fermi-Gbm And Swift-Bat Analysis Of Gravitational-Wave Candidates From The Third Gravitational-Wave Observing Run, C. Fletcher, J. Wood, R. Hamburg, Michael G. Benjamin, Teviet Creighton, Mario C. Diaz, Francisco Llamas, Soma Mukherjee, Gaukhar Nurbek, Volker Quetschke, Wenhui Wang

Physics and Astronomy Faculty Publications and Presentations

We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search …


Neutrino’S Non-Zero Electric Potential As An Origin Of Gravitation, Domain Structure And Expansion Of The Universe., Polievkt Perov Mar 2024

Neutrino’S Non-Zero Electric Potential As An Origin Of Gravitation, Domain Structure And Expansion Of The Universe., Polievkt Perov

College of Arts & Sciences Faculty Works

The axial electric potentials of neutrinos as neutral composite structures, while being very small at large distances, do not vanish, and the same can be said about the neutrino “asymmetric dipoles” (paired neutrinos of not the same kind). Depending on the orientation of the “asymmetric dipole”, its far-field electric potential in some direction can be positive or negative, interacting with other “dipoles” at that large distance attractively or repulsively depending on their mutual orientation. The mutual orientation of the dipoles locally (inside a galaxy) might be such that they are aligned and experience the attractive force toward the local center …


Density And Magnetic Field Asymmetric Kelvin‐Helmholtz Instability, Xuanye Ma, Peter Delamere, Katariina Nykyri, Antonius Otto, Stefan Eriksson, Lihui Chai, Brandon Burkholder, Andrew Dimmock, Yu-Lun Liou, Shiva Kavosi Mar 2024

Density And Magnetic Field Asymmetric Kelvin‐Helmholtz Instability, Xuanye Ma, Peter Delamere, Katariina Nykyri, Antonius Otto, Stefan Eriksson, Lihui Chai, Brandon Burkholder, Andrew Dimmock, Yu-Lun Liou, Shiva Kavosi

Publications

The Kelvin‐Helmholtz (KH) instability can transport mass, momentum, magnetic flux, and energy between the magnetosheath and magnetosphere, which plays an important role in the solar‐wind‐ magnetosphere coupling process for different planets. Meanwhile, strong density and magnetic field asymmetry are often present between the magnetosheath (MSH) and magnetosphere (MSP), which could affect the transport processes driven by the KH instability. Our magnetohydrodynamics simulation shows that the KH growth rate is insensitive to the density ratio between the MSP and the MSH in the compressible regime, which is different than the prediction from linear incompressible theory. When the interplanetary magnetic field (IMF) …


Adsorption Of Crystal Violet Dye From Synthetic Wastewater By Ball-Milled Royal Palm Leaf Sheath, Neloy Sen, Nawrin Rahman Shefa, Kismot Reza, Sk Md Ali Zaker Shawon, Md. Wasikur Rahman Mar 2024

Adsorption Of Crystal Violet Dye From Synthetic Wastewater By Ball-Milled Royal Palm Leaf Sheath, Neloy Sen, Nawrin Rahman Shefa, Kismot Reza, Sk Md Ali Zaker Shawon, Md. Wasikur Rahman

Physics and Astronomy Faculty Publications and Presentations

The current study shows that using a batch approach to remove crystal violet dye from synthetic wastewater is feasible when using royal palm leaf sheath powder as an adsorbent. In order to investigate the effects of many parameters, including starting concentration, pH effect, dye concentration, adsorbent dose, contact time, and temperature, experiments were carried out under various operating conditions. Maximum removal was obtained at pH 6 and at a concentration of 100 ppm, which are considered as ideal values. The influence of pH and dye concentration was shown to be substantial. Langmuir, Freundlich, and Temkin isotherm models were fitted to …


On Skew-Symmetric Splitting And Entropy Conservation Schemes For The Euler Equations, Björn Sjögreen, H.C. Yee Mar 2024

On Skew-Symmetric Splitting And Entropy Conservation Schemes For The Euler Equations, Björn Sjögreen, H.C. Yee

United States National Aeronautics and Space Administration: Publications

The Tadmor type of entropy conservation formulation for the Euler equations and various skew-symmetric splittings of the inviscid flux derivatives are discussed. Numerical stability of high order central and Padé type (centered compact) spatial discretization is enhanced through the application of these formulations. Numerical test on a 2-D vortex convection problem indicates that the stability and accuracy of these formulations using the same high order central spatial discretization are similar for vortex travel up to a few periods. For two to three times longer time integrations, their corresponding stability and accuracy behaviors are very different. The goal of this work …


Comment On “Spectral Shifts In General Relativity,” [Am. J. Phys. 62(10), 903–907 (1994)], Joseph D. Romano, Teviet Creighton Mar 2024

Comment On “Spectral Shifts In General Relativity,” [Am. J. Phys. 62(10), 903–907 (1994)], Joseph D. Romano, Teviet Creighton

Physics and Astronomy Faculty Publications and Presentations

No abstract provided.


Powerful Radio Sources In The Southern Sky. Iii. First Results Of The Optical Spectroscopic Campaign, A. García-Pérez, H. A. Peña-Herazo, A. Jimenez-Gallardo, V. Chavushyan, F. Massaro, S. V. White, A. Capetti, B. Balmaverde, W. R. Forman, Juan P. Madrid Mar 2024

Powerful Radio Sources In The Southern Sky. Iii. First Results Of The Optical Spectroscopic Campaign, A. García-Pérez, H. A. Peña-Herazo, A. Jimenez-Gallardo, V. Chavushyan, F. Massaro, S. V. White, A. Capetti, B. Balmaverde, W. R. Forman, Juan P. Madrid

Physics and Astronomy Faculty Publications and Presentations

We recently built the G4Jy-3CRE catalog of extragalactic radio sources. This catalog lists 264 powerful radio sources selected with similar criteria to those of the revised Third Cambridge Catalog, but visible from the Southern Hemisphere. A literature search revealed that 119 sources in the G4Jy-3CRE catalog (i.e., 45%) lack a firm spectroscopic redshift measurement. Here, we present a campaign aimed at acquiring optical spectra of G4Jy-3CRE sources and measuring their redshifts. We used single-slit observations obtained with the Víctor Blanco Telescope, the New Technology Telescope, the Southern Astrophysical Research Telescope, and the 2.1 m telescope of the Observatorio Astronómico Nacional …


Strongly Magnetized Accretion In Two Ultracompact Binary Systems, Thomas J. Maccarone, Thomas Kupfer, Edgar Najera Casarrubias, Liliana E. Rivera Sandoval, Aarran W. Shaw, Christoper T. Britt, Jan Van Roestel, David R. Zurek Mar 2024

Strongly Magnetized Accretion In Two Ultracompact Binary Systems, Thomas J. Maccarone, Thomas Kupfer, Edgar Najera Casarrubias, Liliana E. Rivera Sandoval, Aarran W. Shaw, Christoper T. Britt, Jan Van Roestel, David R. Zurek

Physics and Astronomy Faculty Publications and Presentations

We present the discoveries of two of AM CVn systems, Gaia14aae and SDSS J080449.49+161624.8, which show X-ray pulsations at their orbital periods, indicative of magnetically collimated accretion. Both also show indications of higher rates of mass transfer relative to the expectations from binary evolution driven purely by gravitational radiation, based on existing optical data for Gaia14aae, which show a hotter white dwarf temperature than expected from standard evolutionary models, and X-ray data for SDSS J080449.49+161624.8 which show a luminosity 10−100 times higher than those for other AM CVn at similar orbital periods. The higher mass transfer rates could be driven …


Roaring To Softly Whispering: X-Ray Emission After ∼3.7 Yr At The Location Of The Transient At2018cow And Implications For Accretion-Powered Scenarios, Giulia Migliori, R. Margutti, B. D. Metzger, R. Chornock, C. Vignali, D. Brethauer, Liliana E. Rivera Sandoval, J. S. Bright, T. Laskar, D. Milisavljevic Feb 2024

Roaring To Softly Whispering: X-Ray Emission After ∼3.7 Yr At The Location Of The Transient At2018cow And Implications For Accretion-Powered Scenarios, Giulia Migliori, R. Margutti, B. D. Metzger, R. Chornock, C. Vignali, D. Brethauer, Liliana E. Rivera Sandoval, J. S. Bright, T. Laskar, D. Milisavljevic

Physics and Astronomy Faculty Publications and Presentations

We present the first deep X-ray observations of luminous fast blue optical transient (LFBOT) AT 2018cow at ∼3.7 yr since discovery, together with the reanalysis of the observation at δt ∼ 220 days. X-ray emission is significantly detected at a location consistent with AT 2018cow. The very soft X-ray spectrum and sustained luminosity are distinct from the spectral and temporal behavior of the LFBOT in the first ∼100 days and would possibly signal the emergence of a new emission component, although a robust association with AT 2018cow can only be claimed at δt ∼ 220 days, while at …


Thermal Phonon Fluctuations And Stability Of The Magnetic Dual Chiral Density Wave Phase In Dense Qcd, Efrain J. Ferrer, William Gyory, Vivian De La Incera Feb 2024

Thermal Phonon Fluctuations And Stability Of The Magnetic Dual Chiral Density Wave Phase In Dense Qcd, Efrain J. Ferrer, William Gyory, Vivian De La Incera

Physics and Astronomy Faculty Publications and Presentations

We study the stability against thermal phonon fluctuations of the magnetic dual chiral density wave (MDCDW) phase, an inhomogeneous phase arising in cold, dense QCD in a magnetic field. Following a recent study that demonstrated the absence of the Landau-Peierls (LP) instability from this phase, we calculate the (threshold) temperature at which the phonon fluctuations wash out the long-range order over a range of magnetic fields and densities relevant to astrophysical applications. Using a high-order Ginzburg-Landau expansion, we find that the threshold temperature is very near the critical temperature for fields of order 10 18     G and still a sizable …


Research Experiences Via Integrating Simulations And Experiments (Revise): A Model Collaborative Research Project For Undergraduate Students In Co2 Sorbent Design, Anthony Griffin, Neziah Smith, Mark Robertson, Bianca Nunez, Jacob Mccraw, Haoyuan Chen, Zhe Qiang Feb 2024

Research Experiences Via Integrating Simulations And Experiments (Revise): A Model Collaborative Research Project For Undergraduate Students In Co2 Sorbent Design, Anthony Griffin, Neziah Smith, Mark Robertson, Bianca Nunez, Jacob Mccraw, Haoyuan Chen, Zhe Qiang

Physics and Astronomy Faculty Publications and Presentations

Undergraduate research experiences are an instrumental component of student development, increasing conceptual understanding, promoting inquiry-based learning, and guiding potential career aspirations. Moving one step further, as research continues to become more interdisciplinary, there exists potential to accelerate student growth by granting additional perspectives through collaborative research. This study demonstrates the utilization of a model collaborative research project, specifically investigating the development of sorbent technologies for efficient CO2 capture, which is an important research area for improving environmental sustainability. A model CO2 sorbent system of heteroatom-doped porous carbon is utilized to enable students to gain knowledge of adsorption processes, through combined …


Research Experiences Via Integrating Simulations And Experiments (Revise): A Model Collaborative Research Project For Undergraduate Students In Co2 Sorbent Design, Anthony Griffin, Neziah Smith, Mark Robertson, Bianca Nunez, Jacob Mccraw, Haoyuan Chen, Zhe Qiang Feb 2024

Research Experiences Via Integrating Simulations And Experiments (Revise): A Model Collaborative Research Project For Undergraduate Students In Co2 Sorbent Design, Anthony Griffin, Neziah Smith, Mark Robertson, Bianca Nunez, Jacob Mccraw, Haoyuan Chen, Zhe Qiang

Physics and Astronomy Faculty Publications and Presentations

Undergraduate research experiences are an instrumental component of student development, increasing conceptual understanding, promoting inquiry-based learning, and guiding potential career aspirations. Moving one step further, as research continues to become more interdisciplinary, there exists potential to accelerate student growth by granting additional perspectives through collaborative research. This study demonstrates the utilization of a model collaborative research project, specifically investigating the development of sorbent technologies for efficient CO2 capture, which is an important research area for improving environmental sustainability. A model CO2 sorbent system of heteroatom-doped porous carbon is utilized to enable students to gain knowledge of adsorption processes, through combined …


Inferring Binary Parameters With Dual-Line Gravitational Wave Detection From Tight Inspiraling Double Neutron Stars, Wen-Fan Feng, Jie-Wen Chen, Tan Liu, Yan Wang, Soumya D. Mohanty Feb 2024

Inferring Binary Parameters With Dual-Line Gravitational Wave Detection From Tight Inspiraling Double Neutron Stars, Wen-Fan Feng, Jie-Wen Chen, Tan Liu, Yan Wang, Soumya D. Mohanty

Physics and Astronomy Faculty Publications and Presentations

Neutron star (NS) binaries can be potentially intriguing gravitational wave sources, with both high- and low-frequency radiation from the possibly aspherical individual stars and the binary orbit, respectively. The successful detection of such a dual-line source could provide fresh insights into binary geometry and NS physics. In the absence of electromagnetic observations, we develop a strategy for inferring the spin-orbit misalignment angle using the tight dual-line double NS system under the spin-orbit coupling. Based on the four-year joint detection of a typical dual-line system with the Laser Interferometer Space Antenna and Cosmic Explorer, we find that the misalignment angle and …


Anomaly Detection On Small Wind Turbine Blades Using Deep Learning Algorithms, Bridger Altice, Edwin Nazario, Mason Davis, Mohammad Shekaramiz, Todd K. Moon, Mohammad A. S. Masoum Feb 2024

Anomaly Detection On Small Wind Turbine Blades Using Deep Learning Algorithms, Bridger Altice, Edwin Nazario, Mason Davis, Mohammad Shekaramiz, Todd K. Moon, Mohammad A. S. Masoum

Electrical and Computer Engineering Faculty Publications

Wind turbine blade maintenance is expensive, dangerous, time-consuming, and prone to misdiagnosis. A potential solution to aid preventative maintenance is using deep learning and drones for inspection and early fault detection. In this research, five base deep learning architectures are investigated for anomaly detection on wind turbine blades, including Xception, Resnet-50, AlexNet, and VGG-19, along with a custom convolutional neural network. For further analysis, transfer learning approaches were also proposed and developed, utilizing these architectures as the feature extraction layers. In order to investigate model performance, a new dataset containing 6000 RGB images was created, making use of indoor and …