Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Stars, Interstellar Medium and the Galaxy

2015

Galaxies

Articles 1 - 4 of 4

Full-Text Articles in Astrophysics and Astronomy

Gamma-Rays From The Quasar Pks 1441+25: Story Of An Escape, P. T. Reynolds, Et Al Dec 2015

Gamma-Rays From The Quasar Pks 1441+25: Story Of An Escape, P. T. Reynolds, Et Al

Physical Sciences Publications

Outbursts from gamma-ray quasars provide insights on the relativistic jets of active galactic nuclei and constraints on the diffuse radiation fields that fill the universe. The detection of significant emission above 100 GeV from a distant quasar would show that some of the radiated gamma-rays escape pair-production interactions with low-energy photons, be it the extragalactic background light (EBL), or the radiation near the supermassive black hole lying at the jet's base. VERITAS detected gamma-ray emission up to ~200 GeV from PKS 1441+25 (z = 0.939) during 2015 April, a period of high activity across all wavelengths. This observation of …


Star Formation And Relaxation In 379 Nearby Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner Jun 2015

Star Formation And Relaxation In 379 Nearby Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner

Dartmouth Scholarship

We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes Mr < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.


The 2d Distribution Of Iron-Rich Ejecta In The Remnant Of Sn 1885 In M31, Robert A. Fesen, Peter A. Höflich, Andrew J. S. Hamilton May 2015

The 2d Distribution Of Iron-Rich Ejecta In The Remnant Of Sn 1885 In M31, Robert A. Fesen, Peter A. Höflich, Andrew J. S. Hamilton

Dartmouth Scholarship

We present Hubble Space Telescope (HST) ultraviolet Fe i and Fe ii images of the remnant of Supernova 1885 (S And) which is observed in absorption against the bulge of the Andromeda galaxy, M31. We compare these Fe i and Fe ii absorption line images to previous HST absorption images of S And, of which the highest quality and theoretically cleanest is Ca ii H and K. Because the remnant is still in free expansion, these images provide a 2D look at the distribution of iron synthesized in this probable Type Ia explosion, thus providing insights and constraints …


The Broad-Lined Type Ic Sn 2012ap And The Nature Of Relativistic Supernovae Lacking A Gamma-Ray Burst Detection, D. Milisavljevic, R. Margutti, J. T. Parrent, A. M. Soderberg, R. A. Fesen Jan 2015

The Broad-Lined Type Ic Sn 2012ap And The Nature Of Relativistic Supernovae Lacking A Gamma-Ray Burst Detection, D. Milisavljevic, R. Margutti, J. T. Parrent, A. M. Soderberg, R. A. Fesen

Dartmouth Scholarship

We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s–1 that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also …