Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Stars, Interstellar Medium and the Galaxy

Dartmouth College

2012

Astrophysics

Articles 1 - 8 of 8

Full-Text Articles in Astrophysics and Astronomy

The Metallicity Of The Cm Draconis System, Ryan C. Terrien, Scott W. Fleming, Suvrath Mahadevan, Rohit Deshpande, Gregory A. Feiden Nov 2012

The Metallicity Of The Cm Draconis System, Ryan C. Terrien, Scott W. Fleming, Suvrath Mahadevan, Rohit Deshpande, Gregory A. Feiden

Dartmouth Scholarship

The CM Draconis system comprises two eclipsing mid-M dwarfs of nearly equal mass in a 1.27-day orbit. This well-studied eclipsing binary has often been used for benchmark tests of stellar models, since its components are amongst the lowest mass stars with well-measured masses and radii (~ 1% relative precision). However, as with many other low-mass stars, non-magnetic models have been unable to match the observed radii and effective temperatures for CM Dra at the 5-10% level. To date, the uncertain metallicity of the system has complicated comparison of theoretical isochrones with observations. In this Letter, we use data from the …


Supernova Resonance-Scattering Line Profiles In The Absence Of A Photosphere, Brian Friesen, E. Baron, David Branch, Bin Chen, Jerod T. Parrent, R. C. Thomas Nov 2012

Supernova Resonance-Scattering Line Profiles In The Absence Of A Photosphere, Brian Friesen, E. Baron, David Branch, Bin Chen, Jerod T. Parrent, R. C. Thomas

Dartmouth Scholarship

In supernova (SN) spectroscopy relatively little attention has been given to the properties of optically thick spectral lines in epochs following the photosphere's recession. Most treatments and analyses of post-photospheric optical spectra of SNe assume that forbidden-line emission comprises most if not all spectral features. However, evidence exists that suggests that some spectra exhibit line profiles formed via optically thick resonance-scattering even months or years after the SN explosion. To explore this possibility, we present a geometrical approach to SN spectrum formation based on the "Elementary Supernova" model, wherein we investigate the characteristics of resonance-scattering in optically thick lines while …


The 1.17 Day Orbit Of The Double-Degenerate (Da+Dq) Nltt 16249, S. Vennes, A. Kawka, S. J. O'Toole, J. R. Thorstensen Sep 2012

The 1.17 Day Orbit Of The Double-Degenerate (Da+Dq) Nltt 16249, S. Vennes, A. Kawka, S. J. O'Toole, J. R. Thorstensen

Dartmouth Scholarship

New spectroscopic observations show that the double degenerate system NLTT 16249 is in a close orbit (a = 5.6+/-0.3 R_sun) with a period of 1.17 d. The total mass of the system is estimated between 1.47 and 2.04 M_sun but it is not expected to merge within a Hubble time-scale (t_merge ~ 10^11 yr). Vennes & Kawka (2012, ApJ, 745, L12) originally identified the system because of the peculiar composite hydrogen (DA class) and molecular (C_2--DQ class--and CN) spectra and the new observations establish this system as the first DA plus DQ close double degenerate. Also, the DQ component was …


High-Velocity Outflows Without Agn Feedback: Eddington-Limited Star Formation In Compact Massive Galaxies, Aleksandar M. Diamond-Stanic, John Moustakas, Christy A. Tremonti, Alison L. Coil, Ryan C. Hickox Aug 2012

High-Velocity Outflows Without Agn Feedback: Eddington-Limited Star Formation In Compact Massive Galaxies, Aleksandar M. Diamond-Stanic, John Moustakas, Christy A. Tremonti, Alison L. Coil, Ryan C. Hickox

Dartmouth Scholarship

We present the discovery of compact, obscured star formation in galaxies at z ~ 0.6 that exhibit 1000 km s–1 outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we estimate star formation rate (SFR) surface densities that approach ΣSFR ≈ 3000 M yr–1 kpc–2, comparable to the Eddington limit from radiation pressure on dust grains. We argue that feedback associated with a compact starburst in the form of radiation pressure from massive stars and ram pressure from supernovae and stellar winds is sufficient …


Spectroscopy And Photometry Of Cataclysmic Variable Candidates From The Catalina Real Time Survey, John R. Thorstensen, Julie N. Skinner Aug 2012

Spectroscopy And Photometry Of Cataclysmic Variable Candidates From The Catalina Real Time Survey, John R. Thorstensen, Julie N. Skinner

Dartmouth Scholarship

The Catalina Real Time Survey (CRTS) has found over 500 cataclysmic variable (CV) candidates, most of which were previously unknown. We report here on follow-up spectroscopy of 36 of the brighter objects. Nearly all of the spectra are typical of CVs at minimum light. One object appears to be a flare star, while another has a spectrum consistent with a CV but lies, intriguingly, at the center of a small nebulosity. We measured orbital periods for eight of the CVs, and estimated distances for two based on the spectra of their secondary stars. In addition to the spectra, we obtained …


Analysis Of The Early-Time Optical Spectra Of Sn 2011fe In M101, J. T. Parrent, D. A. Howell, B. Friesen, R. C. Thomas Jun 2012

Analysis Of The Early-Time Optical Spectra Of Sn 2011fe In M101, J. T. Parrent, D. A. Howell, B. Friesen, R. C. Thomas

Dartmouth Scholarship

The nearby Type Ia supernova SN 2011fe in M101 (cz=241 km s^-1) provides a unique opportunity to study the early evolution of a "normal" Type Ia supernova, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, …


Late-Time Optical Emission From Core-Collapse Supernovae, Dan Milisavljevic, Robert A. Fesen, Roger A. Chevalier, Robert P. Kirshner May 2012

Late-Time Optical Emission From Core-Collapse Supernovae, Dan Milisavljevic, Robert A. Fesen, Roger A. Chevalier, Robert P. Kirshner

Dartmouth Scholarship

Ground-based optical spectra and Hubble Space Telescope images of 10 core-collapse supernovae (CCSNe) obtained several years to decades after outburst are analyzed with the aim of understanding the general properties of their late-time emissions. New observations of SN 1957D, 1970G, 1980K, and 1993J are included as part of the study. Blueshifted line emissions in oxygen and/or hydrogen with conspicuous line substructure are a common and long-lasting phenomenon in the late-time spectra. Followed through multiple epochs, changes in the relative strengths and velocity widths of the emission lines are consistent with expectations for emissions produced by interaction between SN ejecta and …


Spitzer Imaging And Spectral Mapping Of The Oxygen-Rich Supernova Remnant G292.0+1.8, Parviz Ghavamian, Knox S. Long, William P. Blair, Sangwook Park, Robert Fesen Apr 2012

Spitzer Imaging And Spectral Mapping Of The Oxygen-Rich Supernova Remnant G292.0+1.8, Parviz Ghavamian, Knox S. Long, William P. Blair, Sangwook Park, Robert Fesen

Dartmouth Scholarship

We present mid-infrared continuum and emission line images of the Galactic oxygen-rich supernova remnant (SNR) G292.0+1.8, acquired using the MIPS and IRS instruments on the Spitzer Space Telescope. The MIPS 24 μm and 70 μm images of G292.0+1.8 are dominated by continuum emission from a network of filaments encircling the SNR. The morphology of the SNR, as seen in the mid-infrared, resembles that seen in X-rays with the Chandra X-Ray Observatory. Most of the mid-infrared emission in the MIPS images is produced by circumstellar dust heated in the non-radiative shocks around G292.0+1.8, confirming the results of earlier mid-IR …