Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Astrophysics and Astronomy

Preliminary Studies Of Background Rejection Capabilities For The Southern Wide−Field Gamma−Ray Observatory, Sonali Mohan Jan 2022

Preliminary Studies Of Background Rejection Capabilities For The Southern Wide−Field Gamma−Ray Observatory, Sonali Mohan

Dissertations, Master's Theses and Master's Reports

The Southern Wide-field Gamma-ray Observatory (SWGO), is a next-generation
gamma-ray observatory to be constructed in the Southern Hemisphere that will com-
plement current and future instruments by providing a wide-field coverage of a large
portion of the southern sky and a better sensitivity to the 100 GeVs to few PeVs
photon band to understand extreme astrophysical phenomena throughout the uni-
verse. Air shower events initiated by gamma rays will be recorded by the detector
and reconstructed to extract shower properties. The challenge for air-shower arrays
in the observation of gamma-ray sources is the large background of hadronic cos-
mic rays. …


Understanding The Very High Energy Γ-Ray Emission From A Fast Spinning Neutron Star Environment, Chad A. Brisbois Jan 2019

Understanding The Very High Energy Γ-Ray Emission From A Fast Spinning Neutron Star Environment, Chad A. Brisbois

Dissertations, Master's Theses and Master's Reports

Pulsars, and their associated pulsar wind nebulae, are factories producing high energy electrons and positrons in our galaxy. The Dragonfly nebula is a Vela-like pulsar wind nebula in the Cygnus region powered by the spin down of PSR J2021+3651. The TeV γ-ray source 2HWC J2019+367 was originally discovered in 2007 by the Milagro Observatory and has been associated with this pulsar. This dissertation presents the first detailed morphological and spectral study of the TeV emission up to the highest photon energies of 2HWC J2019+367. This analysis has identified two sources, the extended source HAWC J2019+368 and the point source HAWC …


Veritas Observations Of The Unusual Extragalactic Transient Swift J164449.3+573451, P. T. Reynolds, Et Al Aug 2011

Veritas Observations Of The Unusual Extragalactic Transient Swift J164449.3+573451, P. T. Reynolds, Et Al

Physical Sciences Publications

We report on very high energy (>100 GeV) gamma-ray observations of Swift J164449.3+573451, an unusual transient object first detected by the Swift Observatory and later detected by multiple radio, optical, and X-ray observatories. A total exposure of 28 hr was obtained on Swift J164449.3+573451 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) during 2011 March 28-April 15. We do not detect the source and place a differential upper limit on the emission at 500 GeV during these observations of 1.4 × 10–12 erg cm–2 s–1 (99% confidence level). We also present time-resolved upper limits and use a …


Analysis Of The Blazar 1es1218+30.4, Timothy Wolf Jun 2010

Analysis Of The Blazar 1es1218+30.4, Timothy Wolf

Physics

I analyzed the Blazar 1ES1218+30.4 in the high energy spectrum with VERITAS telescope data. The analysis used improved the energy spectrum obtained for the blazar from a maximum of 2.49 TeV to 3.85 TeV. The flux for this point is greater than the previous fit equation predicts, indicating a possible shoulder in the EBL, or Extragalactic Background Light.


Implications Of Gamma-Ray Transparency Constraints In Blazars: Minimum Distances And Gamma-Ray Collimation, P. A. Becker, Menas Kafatos Jan 1995

Implications Of Gamma-Ray Transparency Constraints In Blazars: Minimum Distances And Gamma-Ray Collimation, P. A. Becker, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

We develop a general expression for the γ-γ absorption coefficient, αγγ, for γ-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R0 , and the inner radius, Rm., which is the radius of marginal stability for a Schwarzschild black hole. We use our result for αγγ to calculate the γ-γ optical depth, Tγγ, for γ-rays created at height z and propagating at angle Φ relative to the disk axis, and we show …