Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Astrophysics and Astronomy

Development Of High-Resolution Meteor Spectra Analysis, Zhangqing Yang Aug 2022

Development Of High-Resolution Meteor Spectra Analysis, Zhangqing Yang

Undergraduate Student Research Internships Conference

Meteoroids are often billions of years old and as they ablate and ionize in the atmosphere, they give off light leaving us clues to the history of our solar system. In addition, their presence imposes serious risks to our equipment and astronauts in space. My research deals with analyzing High-Resolution Meteor Spectra, which are obtained by separating the light Meteors give off through a Diffraction Grating. Firstly, as the Meteor’s speed during ablation affects its spectrum, the position, speed, and trajectory of 40 well-tracked Meteors (picked from over 500) were determined using the programs Metal and Mirfit. Then, the spectra …


Research In Optics For Gravitational Wave Detection, Britney Biltz, Noura Ibrahim, Brennan Moore Oct 2018

Research In Optics For Gravitational Wave Detection, Britney Biltz, Noura Ibrahim, Brennan Moore

Undergraduate Research Symposium - Prescott

B.Biltz uses a horizontal “Zollner style” pendulum to monitor changes in the local gravitational field. The pendulum is attracted to the moon and the Sun and so, as the Earth turns, the pendulum’s equilibrium point shifts within a 24-hour period. This is an experiment designed to test the limits of such a pendulum. This sort of system may be useful as a method of monitoring and correcting for gravity gradient noise in future gravitational wave detectors.

N.Ibrahim characterizes thermo-optic noise in high-performance mirror coatings of the type used in Advanced LIGO. To characterize thermo-optic noise, she measures the change in …


Spectral Mixture Modeling Using Principle Component Analysis, Joseph S. Makarewicz, Heather D. Makarewicz Apr 2018

Spectral Mixture Modeling Using Principle Component Analysis, Joseph S. Makarewicz, Heather D. Makarewicz

Scholar Week 2016 - present

A method for modeling mixtures between two end-member spectra using principle component analysis and linear regression was presented. The presentation included results from three binary mixture data sets including orthopyroxene-clinopyroxene, kaolinite-montmorillonite, and nontronite-ferrihydrite.


Design And Evaluation Of 3d-Printed Filar Micrometer, Emily Rull Apr 2018

Design And Evaluation Of 3d-Printed Filar Micrometer, Emily Rull

Scholar Week 2016 - present

This project sought to design and 3D-print a filar micrometer for double star measurements that amateur astronomers could produce cost effectively.

Double stars are celestial objects that allow the mass of stars to be calculated by assessing their orbits. Stellar mass affects every current model of stellar evolution, but the most accurate double star orbits can take decades to record. As a result of the long-term nature of such observations and lack of groundbreaking research in double star studies, professional astronomers are no longer focused on making these measurements. This allows amateur astronomers to pick up where professionals have left …


Physoon - Radiation Detection In Various High Altitude Environments, Christopher Helmerich Oct 2017

Physoon - Radiation Detection In Various High Altitude Environments, Christopher Helmerich

2017 Academic High Altitude Conference

Physoon is a high altitude ballooning payload designed and built by members of the Space Hardware Club for the purpose of comparing cosmic and terrestrial radiation from a variety of environmental conditions, including clear days, night times, solar events (eclipses, solar flares, coronal mass ejections), and thunderstorms. Over three design iterations, Physoon has flown eleven times with various combinations of Geiger counters sensors: a low energy Alpha-Beta-Gamma detector, an unshielded high-energy Beta-Gamma detector, and a shielded high-energy Beta-Gamma detector. One of these iterations successfully recovered data from high altitude during totality of the Great American Solar Eclipse. Another iteration was …


Calibration Of Temperature Sensors In Preparation For The 2017 Total Solar Eclipse, Erick Agrimson, Kaye Smith, Ana Taylor, Vina Onyango-Robshaw, Rachel Lang, Alynie Xiong, Peace Sinyigaya, Grace Maki, Rachel Dubose, Brittany Craig, James Flaten, Gordon Mcintosh Oct 2017

Calibration Of Temperature Sensors In Preparation For The 2017 Total Solar Eclipse, Erick Agrimson, Kaye Smith, Ana Taylor, Vina Onyango-Robshaw, Rachel Lang, Alynie Xiong, Peace Sinyigaya, Grace Maki, Rachel Dubose, Brittany Craig, James Flaten, Gordon Mcintosh

2017 Academic High Altitude Conference

In preparation for the 2017 total solar eclipse, St. Catherine University developed a calibration protocol for the temperature sensors flown during thermal wake boom experiments. The calibration method used a standard two-point technique that corrected each individual sensor for both slope and offset errors using a high quality NIST certified thermocouple as the temperature standard. Our method is not absolute but corrects each sensor relative to the NIST standard so that we feel some confidence that individual sensor variations are mitigated. In preparation for the eclipse, calibration curves were generated for over 200 individual digital and thermistor temperature sensors.


High Altitude Cosmic Ray Detection, Jordan D. Van Nest Aug 2016

High Altitude Cosmic Ray Detection, Jordan D. Van Nest

2017 Academic High Altitude Conference

Cosmic rays are high energy atomic nuclei travelling near the speed of light that collide with atoms and molecules in Earth’s upper atmosphere (primarily with nitrogen and oxygen), breaking down into a shower of particles of various energies in the stratosphere. As they travel earthward, these particles continue to break down and lose energy which results in relatively little ionizing radiation reaching the surface. Due to the scattering of cosmic rays, the angle at which the rays enter the atmosphere can affect the number and energies of ionizing particles detected at various altitudes. When using a standard Geiger counter on …


Detecting Cosmic Rays Using Cemos Sensors In Consumer Devices, Matthew M. Plewa Jun 2015

Detecting Cosmic Rays Using Cemos Sensors In Consumer Devices, Matthew M. Plewa

2017 Academic High Altitude Conference

Since the time of Victor Hess and his balloon flight that demonstrated that cosmic rays increased with altitude, new detection methods have become widely available to be used on current day flights. One such method is to utilize CCDs with long duration exposures. During the exposures the CCD is exposed to cosmic rays which then leave a track. This phenomenon is caused by the CCD's inability to distinguish between photons of light and charged particles. Such tracks can then be separated from the CCD's background noise and classified.


Directional Camera Control On High Altitude Balloons, Matthew M. Plewa, Brent Scharlau Jun 2015

Directional Camera Control On High Altitude Balloons, Matthew M. Plewa, Brent Scharlau

2017 Academic High Altitude Conference

The research reported in this paper examined the design and control of a gimbal for solar eclipse tracking and video recording. The gimbal design required 3 axes of rotation to allow for full range of motion. Utilizing individual brushless motors for each of the axes ensure minimum rotational requirements on each axes. In controlling the gimbal, both a mathematical and visual method were utilized. The mathematical method is a modified version of what is currently used for solar array pointing. The visual method looks at where the position of the sun is within the image and determines what angle changes …


Image Processing Algorithms For Improving Planetary Exploration And Understanding, Ali Pouryazdanpanah Apr 2013

Image Processing Algorithms For Improving Planetary Exploration And Understanding, Ali Pouryazdanpanah

College of Engineering: Graduate Celebration Programs

  • To design a fully automated tool-set that allows to detect and extract the sky region in planetary images.
  • To develop the new method for rock segmentation in planetary stereo images.
  • To develop the new method for shadow detection in planetary images