Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

External Galaxies

2013

Astrophysics

Articles 1 - 4 of 4

Full-Text Articles in Astrophysics and Astronomy

The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox Dec 2013

The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox

Dartmouth Scholarship

We perform halo occupation distribution (HOD) modeling of the projected two-point correlation function (2PCF) of high-redshift (z~1.2) X-ray-bright active galactic nuclei (AGN) in the XMM-COSMOS field measured by Allevato et al. The HOD parameterization is based on low-luminosity AGN in cosmological simulations. At the median redshift of z~1.2, we derive a median mass of (1.02+0.21/-0.23)x10^{13} Msun/h for halos hosting central AGN and an upper limit of ~10% on the AGN satellite fraction. Our modeling results indicate (at the 2.5-sigma level) that X-ray AGN reside in more massive halos compared to more bolometrically luminous, optically-selected quasars at similar redshift. The modeling …


The Xmm-Newton Spectrum Of A Candidate Recoiling Supermassive Black Hole: An Elusive Inverted P-Cygni Profile, G. Lanzuisi, F. Civano, S. Marchesi, A. Comastri Nov 2013

The Xmm-Newton Spectrum Of A Candidate Recoiling Supermassive Black Hole: An Elusive Inverted P-Cygni Profile, G. Lanzuisi, F. Civano, S. Marchesi, A. Comastri

Dartmouth Scholarship

We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ~6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the …


Salt Long-Slit Spectroscopy Of Luminous Obscured Quasars: An Upper Limit On The Size Of The Narrow-Line Region?, Kevin N. Hainline, Ryan Hickox, Jenny E. Greene, Adam D. Myers, Nadia L. Zakamska Aug 2013

Salt Long-Slit Spectroscopy Of Luminous Obscured Quasars: An Upper Limit On The Size Of The Narrow-Line Region?, Kevin N. Hainline, Ryan Hickox, Jenny E. Greene, Adam D. Myers, Nadia L. Zakamska

Dartmouth Scholarship

We present spatially resolved long-slit spectroscopy from the Southern African Large Telescope (SALT) to examine the spatial extent of the narrow-line regions (NLRs) of a sample of 8 luminous obscured quasars at 0.10 < z < 0.43. Our results are consistent with an observed shallow slope in the relationship between NLR size and L_[OIII], which has been interpreted to indicate that NLR size is limited by the density and ionization state of the NLR gas rather than the availability of ionizing photons. We also explore how the NLR size scales with a more direct measure of instantaneous AGN power using mid-IR photometry from WISE, which probes warm to hot dust near the central black hole and so, unlike [OIII], does not depend on the properties of the NLR. Using our results as well as samples from the literature, we obtain a power-law relationship between NLR size and L_8micron that is significantly steeper than that observed for NLR size and L_[OIII]. We find that the size of the NLR goes approximately as L^(1/2)_8micron, as expected from the simple scenario of constant-density clouds illuminated by a central ionizing source. We further see tentative evidence for a flattening of the relationship between NLR size and L_8micron at the high luminosity end, and propose that we are seeing a limiting NLR size of 10 - 20 kpc, beyond which the availability of gas to ionize becomes too low. We find that L_[OIII] ~ L_8micron^(1.4), consistent with a picture in which the L_[OIII] is dependent on the volume of the NLR. These results indicate that high-luminosity quasars have a strong effect in ionizing the available gas in a galaxy.


The Cluster And Field Galaxy Active Galactic Nucleus Fraction At Z = 1-1.5: Evidence For A Reversal Of The Local Anticorrelation Between Environment And Agn Fraction, Paul Martini, E. D. Miller, M. Brodwin, S. A. Stanford, Anthony H. Gonzalez, M. Bautz, R. C. Hickox Apr 2013

The Cluster And Field Galaxy Active Galactic Nucleus Fraction At Z = 1-1.5: Evidence For A Reversal Of The Local Anticorrelation Between Environment And Agn Fraction, Paul Martini, E. D. Miller, M. Brodwin, S. A. Stanford, Anthony H. Gonzalez, M. Bautz, R. C. Hickox

Dartmouth Scholarship

The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M >= 1014 M ) at 1 < z < 1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z ~ 3. We estimate that the cluster AGN fraction at 1 < z < 1.5 is f_A = 3.0^{+2.4}_{-1.4}% for AGNs with a rest-frame, hard X-ray luminosity greater than L X, H >= 1044 erg s-1. This fraction is measured relative to all cluster galaxies more luminous than M^*_{3.6}(z) + 1, where M^*_{3.6}(z) is the absolute magnitude of the break in the galaxy luminosity …