Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Astrophysics and Astronomy

Toward Deep Learning Emulators For Modeling The Large-Scale Structure Of The Universe, Neerav Kaushal Jan 2022

Toward Deep Learning Emulators For Modeling The Large-Scale Structure Of The Universe, Neerav Kaushal

Dissertations, Master's Theses and Master's Reports

Multi-billion dollar cosmological surveys are being conducted almost every decade in today’s era of precision cosmology. These surveys scan vast swaths of sky and generate tons of observational data. In order to extract meaningful information from this data and test these observations against theory, rigorous theoretical predictions are needed. In the absence of an analytic method, cosmological simulations become the most widely used tool to provide these predictions in order to test against the observations. They can be used to study covariance matrices, generate mock galaxy catalogs and provide ready-to-use snapshots for detailed redshift analyses. But cosmological simulations of matter …


Accretion Onto A Black Hole At The Center Of A Neutron Star: Nuclear Equations Of State, Sophia Christina Schnauck Jan 2022

Accretion Onto A Black Hole At The Center Of A Neutron Star: Nuclear Equations Of State, Sophia Christina Schnauck

Honors Projects

A recent re-examination of Bondi accretion (see Richards, Baumgarte and Shapiro (2021)) revealed that, for stiff equations of state (EOSs), steady-state accretion can only occur for accretion rates exceeding a certain minimum. To date, this result has been explored only for gamma-law equations of state. Instead, we consider accretion onto a small black hole residing at the center of a neutron star governed by a more realistic nuclear EOS. We generalize the relativistic Bondi solution for such EOSs, approximated by piecewise polytropes, and thereby obtain analytical expressions for the accretion rates which were reflected in our numerical simulations. After taking …


Formation Of Supermassive Black Holes In The Early Universe, Arpan Das Apr 2021

Formation Of Supermassive Black Holes In The Early Universe, Arpan Das

Electronic Thesis and Dissertation Repository

The aim of the work presented in this thesis is to understand the formation and growth of the seeds of the supermassive black holes in early universe. Supermassive black holes (SMBH) with masses larger than 108MSun have been observed when the Universe was only 800 Myr old. The formation and accretion history of the seeds of these supermassive black holes are a matter of debate. We consider the scenario of massive seed black hole formation which allows gas to directly collapse into a black hole (DCBH) of similar mass. Considering this scenario, we show that the mass …


The Disk Structure Of Late Type Galaxies: Determining The Black Hole Mass Function Of Low Surface Brightness Galaxies Through Logarithmic Spiral Arm Pitch Angle Measurement, Michael S. Fusco Aug 2019

The Disk Structure Of Late Type Galaxies: Determining The Black Hole Mass Function Of Low Surface Brightness Galaxies Through Logarithmic Spiral Arm Pitch Angle Measurement, Michael S. Fusco

Graduate Theses and Dissertations

This dissertation pertains to the geometric structure of late type (spiral) galaxies, specifically on the relation between the logarithmic spiral pitch angle of the galactic spiral arms with other properties of the galaxy, such as central Supermassive Black Hole (SMBH) mass. Our work continues a study of the Black Hole Mass Function (BHMF) in local galaxies by recording the pitch angles of spiral galaxies with lower surface brightness than were previously included. We also conduct a case study on the structure of an interestingly shaped galaxy, UGC 4599. Previous studies on the topic of spiral arm pitch angles have measured …


Two Topics In Astrophysics: Exoplanetary Gravitational Microlensing And Radio Interferometry, Eleanor Sara Turrell Jan 2017

Two Topics In Astrophysics: Exoplanetary Gravitational Microlensing And Radio Interferometry, Eleanor Sara Turrell

Senior Projects Spring 2017

Senior Project submitted to The Division of Science, Mathematics and Computing of Bard College.


Molecular Processes In Astrophysics: Calculations Of H + H2 Excitation, De-Excitation, And Cooling, Matthew Kelley Dec 2012

Molecular Processes In Astrophysics: Calculations Of H + H2 Excitation, De-Excitation, And Cooling, Matthew Kelley

UNLV Theses, Dissertations, Professional Papers, and Capstones

The implications of H+H2 cooling in astrophysics is important to several applications. One of the most significant and pure applications is its role in cooling in the early universe. Other applications would include molecular dynamics in nebulae and their collapse into stars and astrophysical shocks. Shortly after the big bang, the universe was a hot primordial gas of photons, electrons, and nuclei among other ingredients. By far the most dominant nuclei in the early universe was hydrogen. In fact, in the early universe the matter density was 90 percent hydrogen and only 10 percent helium with small amounts of lithium …