Open Access. Powered by Scholars. Published by Universities.®

Astrophysics and Astronomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 89

Full-Text Articles in Astrophysics and Astronomy

(R2033) Resonant Curve Due To Perturbations Of Geo-Synchronous Satellite Including Effect Of Earth’S Equatorial Ellipticity, Sushil Yadav, Mukesh Kumar, Virendra Kumar Jun 2023

(R2033) Resonant Curve Due To Perturbations Of Geo-Synchronous Satellite Including Effect Of Earth’S Equatorial Ellipticity, Sushil Yadav, Mukesh Kumar, Virendra Kumar

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we have investigated resonant curve due to frequencies − angular rate of rotation of the Earth and the rate of change of Earth’s equatorial ellipticity parameter. Perturbation equations are used to convert the non-linear equations of motion of geo-synchronous satellite to the linear form. With the help of graphs, we have shown the effect of Earth’s equatorial ellipticity parameter on oscillatory amplitude and variation in orbital radius of satellite. By defining different perturbations, we have also drawn resonant curve due to frequencies steady-state orbital angular rate of satellite and the rate of change of Earth’s equatorial ellipticity …


Du Undergraduate Showcase: Research, Scholarship, And Creative Works, Caitlyn Aldersea, Justin Bravo, Sam Allen, Anna Block, Connor Block, Emma Buechler, Maria De Los Angeles Bustillos, Arianna Carlson, William Christensen, Olivia Kachulis, Noah Craver, Kate Dillon, Muskan Fatima, Angel Fernandes, Emma Finch, Colleen Cassidy, Amy Fishman, Andrea Francis, Stacia Fritz, Simran Gill, Emma Gries, Rylie Hansen, Shannon Powers, Jacqueline Martinez, Zachary Harker, Ashley Hasty, Mykaela Tanino-Springsteen, Kathleen Hopps, Adelaide Kerenick, Colin Kleckner, Ci Koehring, Elijah Kruger, Braden Krumholz, Maddie Leake, Lyneé Alves, Seraphina Loukas, Yatzari Lozano Vazquez, Haley Maki, Emily Martinez, Sierra Mckinney, Mykaela Tanino-Springsteen, Audrey Mitchell, Kipling Newman, Audrey Ng, Megan Lucyshyn, Andrew Nguyen, Stevie Ostman, Casandra Pearson, Alexandra Penney, Julia Gielczynski, Tyler Ball, Anna Rini, Christina Rorres, Simon Ruland, Helayna Schafer, Emma Sellers, Sarah Schuller, Claire Shaver, Kevin Summers, Isabella Shaw, Madison Sinar, Claudia Pena, Apshara Siwakoti, Carter Sorensen, Madi Sousa, Anna Sparling, Alexandra Revier, Brandon Thierry, Dylan Tyree, Maggie Williams, Lauren Wols May 2023

Du Undergraduate Showcase: Research, Scholarship, And Creative Works, Caitlyn Aldersea, Justin Bravo, Sam Allen, Anna Block, Connor Block, Emma Buechler, Maria De Los Angeles Bustillos, Arianna Carlson, William Christensen, Olivia Kachulis, Noah Craver, Kate Dillon, Muskan Fatima, Angel Fernandes, Emma Finch, Colleen Cassidy, Amy Fishman, Andrea Francis, Stacia Fritz, Simran Gill, Emma Gries, Rylie Hansen, Shannon Powers, Jacqueline Martinez, Zachary Harker, Ashley Hasty, Mykaela Tanino-Springsteen, Kathleen Hopps, Adelaide Kerenick, Colin Kleckner, Ci Koehring, Elijah Kruger, Braden Krumholz, Maddie Leake, Lyneé Alves, Seraphina Loukas, Yatzari Lozano Vazquez, Haley Maki, Emily Martinez, Sierra Mckinney, Mykaela Tanino-Springsteen, Audrey Mitchell, Kipling Newman, Audrey Ng, Megan Lucyshyn, Andrew Nguyen, Stevie Ostman, Casandra Pearson, Alexandra Penney, Julia Gielczynski, Tyler Ball, Anna Rini, Christina Rorres, Simon Ruland, Helayna Schafer, Emma Sellers, Sarah Schuller, Claire Shaver, Kevin Summers, Isabella Shaw, Madison Sinar, Claudia Pena, Apshara Siwakoti, Carter Sorensen, Madi Sousa, Anna Sparling, Alexandra Revier, Brandon Thierry, Dylan Tyree, Maggie Williams, Lauren Wols

DU Undergraduate Research Journal Archive

DU Undergraduate Showcase: Research, Scholarship, and Creative Works


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


Evolution Of Coronal Magnetic Field Parameters During X5.4 Solar Flare, Seth H. Garland, Benjamin F. Akers, Vasyl B. Yurchyshyn, Robert D. Loper, Daniel J. Emmons Mar 2023

Evolution Of Coronal Magnetic Field Parameters During X5.4 Solar Flare, Seth H. Garland, Benjamin F. Akers, Vasyl B. Yurchyshyn, Robert D. Loper, Daniel J. Emmons

Faculty Publications

The coronal magnetic field over NOAA Active Region 11,429 during a X5.4 solar flare on 7 March 2012 is modeled using optimization based Non-Linear Force-Free Field extrapolation. Specifically, 3D magnetic fields were modeled for 11 timesteps using the 12-min cadence Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager photospheric vector magnetic field data, spanning a time period of 1 hour before through 1 hour after the start of the flare. Using the modeled coronal magnetic field data, seven different magnetic field parameters were calculated for 3 separate regions: areas with surface |Bz| ≥ 300 G, areas of flare brightening seen …


Dynamical Aspects In (4+1)-Body Problems, Ryan Gauthier Jan 2023

Dynamical Aspects In (4+1)-Body Problems, Ryan Gauthier

Theses and Dissertations (Comprehensive)

The n-body problem models a system of n-point masses that attract each other via some binary interaction. The (n + 1)-body problem assumes that one of the masses is located at the origin of the coordinate system. For example, an (n+1)-body problem is an ideal model for Saturn, seen as the central mass, and one of its outer rings. A relative equilibrium (RE) is a special solution of the (n+1)-body problem where the non-central bodies rotate rigidly about the centre of mass. In rotating coordinates, these solutions become equilibria.

In this thesis we study dynamical aspects of planar (4 + …


Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh Oct 2022

Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh

Doctoral Dissertations

Hyperspectral imaging has been deployed in earth and planetary remote sensing, and has contributed the development of new methods for monitoring the earth environment and new discoveries in planetary science. It has given scientists and engineers a new way to observe the surface of earth and planetary bodies by measuring the spectroscopic spectrum at a pixel scale. Hyperspectal images require complex processing before practical use. One of the important goals of hyperspectral imaging is to obtain the images of reflectance spectrum. A raw image obtained by hyperspectral remote sensing usually undergoes conversion to a physical quantity representing the intensity of …


Introduction To Classical Field Theory, Charles G. Torre Jun 2022

Introduction To Classical Field Theory, Charles G. Torre

All Complete Monographs

This is an introduction to classical field theory. Topics treated include: Klein-Gordon field, electromagnetic field, scalar electrodynamics, Dirac field, Yang-Mills field, gravitational field, Noether theorems relating symmetries and conservation laws, spontaneous symmetry breaking, Lagrangian and Hamiltonian formalisms.


The World As We Know It: Maps And Atlases From Special Collections, Archives And Special Collections, Luke Meagher Feb 2022

The World As We Know It: Maps And Atlases From Special Collections, Archives And Special Collections, Luke Meagher

Library Exhibits

Selections of maps and atlases from Sandor Teszler Library’s Special Collections are presented in this exhibit to show how, over time, cartographers have represented the world as we know it.


New Techniques In Celestial Mechanics, Ali Abdulrasool Abdulhussein Jan 2022

New Techniques In Celestial Mechanics, Ali Abdulrasool Abdulhussein

Graduate Theses, Dissertations, and Problem Reports

It is shown that for the classical system of the N body problem ( Newtonian Motion), if the motion of the N particles starts from a planar initial motion at t=t_{0}, then the motion of the N particles continues to be planar for every t\in[t_{0},t_{1}], assuming that no collisions occur between the N particles. Same argument is shown about the linear motion, namely, for the classical system of the N body problem, if the motion of the N particles starts from a linear initial motion at t=t_{0}, then the motion of the N particles continues to be linear for every …


The Kepler Problem On Complex And Pseudo-Riemannian Manifolds, Michael R. Astwood Jan 2022

The Kepler Problem On Complex And Pseudo-Riemannian Manifolds, Michael R. Astwood

Theses and Dissertations (Comprehensive)

The motion of objects in the sky has captured the attention of scientists and mathematicians since classical times. The problem of determining their motion has been dubbed the Kepler problem, and has since been generalized into an abstract problem of dynamical systems. In particular, the question of whether a classical system produces closed and bounded orbits is of importance even to modern mathematical physics, since these systems can often be analysed by hand. The aforementioned question was originally studied by Bertrand in the context of celestial mechanics, and is therefore referred to as the Bertrand problem. We investigate the qualitative …


Modeling Cherenkov Light Detection Timing For The Very Energetic Radiation Imaging Telescope Array System, Keilan Finn Ramirez Dec 2021

Modeling Cherenkov Light Detection Timing For The Very Energetic Radiation Imaging Telescope Array System, Keilan Finn Ramirez

Physics

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12-meter telescopes which use the Imaging Atmospheric Cherenkov Technique to conduct high-energy gamma-ray astronomy. VERITAS detects magnitude and location information associated with Cherenkov light, and uses this information to indirectly observe gamma-rays through a software reconstruction process. VERITAS also records timing information corresponding to Cherenkov light detection, and this additional information could theoretically be incorporated into the reconstruction process to improve the accuracy of gamma-ray observations. The first step to including timing information is to understand when Cherenkov light detection would be expected from a known …


Zeros Of Harmonic Polynomials And Related Applications, Azizah Alrajhi Nov 2021

Zeros Of Harmonic Polynomials And Related Applications, Azizah Alrajhi

USF Tampa Graduate Theses and Dissertations

In this thesis, we study topics related to harmonic functions, where we are interested in the maximum number of solutions of a harmonic polynomial equation and how it is related to gravitational lensing. In Chapter 2, we study the conditions that we should have on the real or complex coefficients of a polynomial p to get the maximum number of distinct solutions for the equation p(z) − z¯ 2 = 0, where deg p = 2. In Chapter 3, we discuss the lens equation when the lens is an ellipse, a limac¸on, or a Neumann Oval. Also, we give a …


Euler's Three-Body Problem, Sylvio R. Bistafa Aug 2021

Euler's Three-Body Problem, Sylvio R. Bistafa

Euleriana

In physics and astronomy, Euler's three-body problem is to solve for the motion of a body that is acted upon by the gravitational field of two other bodies. This problem is named after Leonhard Euler (1707-1783), who discussed it in memoirs published in the 1760s. In these publications, Euler found that the parameter that controls the relative distances among three collinear bodies is given by a quintic equation. Later on, in 1772, Lagrange dealt with the same problem, and demonstrated that for any three masses with circular orbits, there are two special constant-pattern solutions, one where the three bodies remain …


Mathematical Modelling & Simulation Of Large And Small Scale Structures In Star Formation, Gianfranco Bino Jun 2021

Mathematical Modelling & Simulation Of Large And Small Scale Structures In Star Formation, Gianfranco Bino

Electronic Thesis and Dissertation Repository

This thesis aims to study the magnetic and evolutionary properties of stellar objects from the prestellar phase up to and including the late protostellar phase. Many of the properties governing star formation are linked to the core’s physical properties and the magnetic field highly dictates much of the core’s stability.

The thesis begins with the implementation of a fully analytic magnetic field model used to study the magnetic properties governing the prestellar core FeSt 1-457. The model is a direct result of Maxwell’s equations and yields a central-to-surface magnetic field ratio in the equatorial plane in cylindrical coordinates. The model …


Discovering Kepler’S Third Law From Planetary Data, Boyan Kostadinov, Satyanand Singh May 2021

Discovering Kepler’S Third Law From Planetary Data, Boyan Kostadinov, Satyanand Singh

Publications and Research

In this data-inspired project, we illustrate how Kepler’s Third Law of Planetary Motion can be discovered from fitting a power model to real planetary data obtained from NASA, using regression modeling. The power model can be linearized, thus we can use linear regression to fit the model parameters to the data, but we also show how a non-linear regression can be implemented, using the R programming language. Our work also illustrates how the linear least squares used for fitting the power model can be implemented in Desmos, which could serve as the computational foundation for this project at a lower …


The Pencil Code, A Modular Mpi Code For Partial Differential Equations And Particles: Multipurpose And Multiuser-Maintained, The Pencil Code Collaboration, Chao-Chin Yang Feb 2021

The Pencil Code, A Modular Mpi Code For Partial Differential Equations And Particles: Multipurpose And Multiuser-Maintained, The Pencil Code Collaboration, Chao-Chin Yang

Physics & Astronomy Faculty Research

The Pencil Code is a highly modular physics-oriented simulation code that can be adapted to a wide range of applications. It is primarily designed to solve partial differential equations (PDEs) of compressible hydrodynamics and has lots of add-ons ranging from astrophysical magnetohydrodynamics (MHD) (A. Brandenburg & Dobler, 2010) to meteorological cloud microphysics (Li et al., 2017) and engineering applications in combustion (Babkovskaia et al., 2011). Nevertheless, the framework is general and can also be applied to situations not related to hydrodynamics or even PDEs, for example when just the message passing interface or input/output strategies of the code are to …


The Causal Topology Of Neutral 4-Manifolds With Null Boundary, Nikos Georgiou, Brendan Guilfoyle Jan 2021

The Causal Topology Of Neutral 4-Manifolds With Null Boundary, Nikos Georgiou, Brendan Guilfoyle

Publications

This paper considers aspects of 4-manifold topology from the point of view of the null cone of a neutral metric, a point of view we call neutral causal topology. In particular, we construct and investigate neutral 4-manifolds with null boundaries that arise from canonical 3- and 4-dimensional settings. A null hypersurface is foliated by its normal and, in the neutral case, inherits a pair of totally null planes at each point. This paper focuses on these plane bundles in a number of classical settings The first construction is the conformal compactification of flat neutral 4- space into the 4-ball. The …


An Accurate Solution Of The Self-Similar Orbit-Averaged Fokker-Planck Equation For Core-Collapsing Isotropic Globular Clusters: Properties And Application, Yuta Ito Sep 2020

An Accurate Solution Of The Self-Similar Orbit-Averaged Fokker-Planck Equation For Core-Collapsing Isotropic Globular Clusters: Properties And Application, Yuta Ito

Dissertations, Theses, and Capstone Projects

Hundreds of dense star clusters exist in almost all galaxies. Each cluster is composed of approximately ten thousand through ten million stars. The stars orbit in the clusters due to the clusters' self-gravity. Standard stellar dynamics expects that the clusters behave like collisionless self-gravitating systems on short time scales (~ million years) and the stars travel in smooth continuous orbits. Such clusters temporally settle to dynamically stable states or quasi-stationary states (QSS). Two fundamental QSS models are the isothermal- and polytropic- spheres since they have similar structures to the actual core (central part) and halo (outskirt) of the clusters. The …


Binary Neutron Star Mergers: Testing Ejecta Models For High Mass-Ratios, Allen Murray Aug 2020

Binary Neutron Star Mergers: Testing Ejecta Models For High Mass-Ratios, Allen Murray

The Journal of Purdue Undergraduate Research

Neutron stars are extremely dense stellar corpses which sometimes exist in orbiting pairs known as binary neutron star (BNS) systems. The mass ratio (q) of a BNS system is defined as the mass of the heavier neutron star divided by the mass of the lighter neutron star. Over time the neutron stars will inspiral toward one another and produce a merger event. Although rare, these events can be rich sources of observational data due to their many electromagnetic emissions as well as the gravitational waves they produce. The ability to extract physical information from such observations relies heavily on numerical …


Spherically Symmetric Charged Anisotropic Solution In Higher Dimensional Bimetric General Relativity, D. N. Pandya, A. H. Hasmani Jun 2020

Spherically Symmetric Charged Anisotropic Solution In Higher Dimensional Bimetric General Relativity, D. N. Pandya, A. H. Hasmani

Applications and Applied Mathematics: An International Journal (AAM)

In this paper we have obtained a solution of field equations of Rosen’s bimetric general relativity (BGR) for the static spherically symmetric space-time with charged anisotropic fluid distribution in (n+2)-dimensions. An exact solution is obtained and a special case is considered. This work is an extension of our previous work where four-dimensional case was discussed.


Stability Of Regular Thin Shell Wormholes Supported By Vdw Quintessence, A. Eid Jun 2020

Stability Of Regular Thin Shell Wormholes Supported By Vdw Quintessence, A. Eid

Applications and Applied Mathematics: An International Journal (AAM)

The dynamical equations of motion for a thin shell wormhole from regular black holes that are supported by Van der Waals (VDW) quintessence equation of state (EoS) are constructed, through cut and -paste technique. The linearized stability of regular wormhole is derived. The presences of unstable and stable static solutions with different value of some parameters are analyzed.


Towards Gross-Pitaevskiian Description Of Solar System & Galaxies, Florentin Smarandache, Victor Christianto, Yunita Umniyati May 2020

Towards Gross-Pitaevskiian Description Of Solar System & Galaxies, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

In this paper, we argue that Gross-Pitaevskii model can be a more complete description of both solar system and spiral galaxies, especially taking into account the nature of chirality and vortices in galaxies. We also hope to bring out some correspondence among existing models, e.g., the topological vortex approach, Burgers equation in the light of KAM theory, and the Cantorian Navier-Stokes approach. We hope further investigation can be done around this line of approach.


Constraining Neutron Star Nuclear Equations Of State Based On Observational Data, Alexander Clevinger May 2020

Constraining Neutron Star Nuclear Equations Of State Based On Observational Data, Alexander Clevinger

Undergraduate Honors Thesis Projects

This project analyzes recent observational data of neutron stars. It uses this to data to constrain nuclear equations of state proposed by Oter. et al. based on the maximum masses proposed by these equations of state. I do this by using numerical integration of the Tolman-Oppenheimer-Volkov equation to provide equilibrium states for each proposed EoS.


Three Possible Applications Of Neutrosophic Logic In Fundamental And Applied Sciences, Victor Christianto, Robert Neil Boyd, Florentin Smarandache Jan 2020

Three Possible Applications Of Neutrosophic Logic In Fundamental And Applied Sciences, Victor Christianto, Robert Neil Boyd, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the variations surround three parameters called T,I,F (truth, indeterminacy, falsehood) which can take a range of values. This paper shortly reviews the links among aether and matter creation from the perspective of Neutrosophic Logic. Once we accept the existence of aether as physical medium, then we can start to ask on what causes matter ejection, as observed in various findings related to quasars etc. One particular cosmology model known as VMH (variable mass hypothesis) has been suggested by notable astrophysicists like Halton …


A Review On Superluminal Physics And Superluminal Communication In Light Of The Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache Jan 2020

A Review On Superluminal Physics And Superluminal Communication In Light Of The Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In a recent paper, we describe a model of quantum communication based on combining consciousness experiment and entanglement, which can serve as impetus to stop 5G-network-caused diseases. Therefore, in this paper we consider superluminal physics and superluminal communication as a bridge or intermediate way between subluminal physics and action-at-a-distance (AAAD) physics, especially from neutrosophic logic perspective. Although several ways have been proposed to bring such a superluminal communication into reality, such as Telluric wave or Telepathy analog of Horejev and Baburin, here we also review two possibilities: quaternion communication and also quantum communication based on quantum noise. Further research is …


One-Note-Samba Approach To Cosmology, Florentin Smarandache, Victor Christianto Aug 2019

One-Note-Samba Approach To Cosmology, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

Inspired by One Note Samba, a standard jazz repertoire, we present an outline of Bose-Einstein Condensate Cosmology. Although this approach seems awkward and a bit off the wall at first glance, it is not impossible to connect altogether BEC, Scalar Field Cosmology and Feshbach Resonance with Ermakov-Pinney equation. We also briefly discuss possible link with our previous paper which describes Newtonian Universe with Vortex in terms of Ermakov equation.


From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto Mar 2019

From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

The Standard Model of particle physics has accomplished a great deal including the discovery of Higgs boson in 2012. However, since the supersymmetric extension of the Standard Model has not been successful so far, some physicists are asking what alternative deeper theory could be beyond the Standard Model? This article discusses the relationship between mathematics and physical reality and explores the ways to go from Big Science to “Deep Science”.


Integrable Cosmological Model With Van Der Waals Gas And Matter Creation, Rossen Ivanov, Emil Prodanov Jan 2019

Integrable Cosmological Model With Van Der Waals Gas And Matter Creation, Rossen Ivanov, Emil Prodanov

Articles

A cosmological model with van der Waals gas and dust has been studied in the context of a three-component autonomous non-linear dynamical system involving the time evolution of the particle number density, the Hubble parameter and the temperature. Due to the presence of a symmetry of the model, the temperature evolution law is determined (in terms of the particle number density) and with this the dynamical system reduces to a two-component one which is fully integrable. The globally conserved Hamiltonian is identified and, in addition to it, some special (second) integrals, defined and conserved on a lower-dimensional manifold, are found. …


Neutrosophic Triplet Structures - Vol. 1, Florentin Smarandache, Memet Sahin Jan 2019

Neutrosophic Triplet Structures - Vol. 1, Florentin Smarandache, Memet Sahin

Branch Mathematics and Statistics Faculty and Staff Publications

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory was firstly proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs, the properties of neutrosophic sets …


The Encyclopedia Of Neutrosophic Researchers - Vol. 3, Florentin Smarandache Jan 2019

The Encyclopedia Of Neutrosophic Researchers - Vol. 3, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: …