Open Access. Powered by Scholars. Published by Universities.®

Other Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Other Applied Mathematics

Optimizing The Analysis Of Electroencephalographic Data By Dynamic Graphs, Mehrsasadat Golestaneh Apr 2014

Optimizing The Analysis Of Electroencephalographic Data By Dynamic Graphs, Mehrsasadat Golestaneh

Electronic Thesis and Dissertation Repository

The brain’s underlying functional connectivity has been recently studied using tools offered by graph theory and network theory. Although the primary research focus in this area has so far been mostly on static graphs, the complex and dynamic nature of the brain’s underlying mechanism has initiated the usage of dynamic graphs, providing groundwork for time sensi- tive and finer investigations. Studying the topological reconfiguration of these dynamic graphs is done by exploiting a pool of graph metrics, which describe the network’s characteristics at different scales. However, considering the vast amount of data generated by neuroimaging tools, heavy computation load and …


Construction Algorithms For Expander Graphs, Vlad S. Burca Apr 2014

Construction Algorithms For Expander Graphs, Vlad S. Burca

Senior Theses and Projects

Graphs are mathematical objects that are comprised of nodes and edges that connect them. In computer science they are used to model concepts that exhibit network behaviors, such as social networks, communication paths or computer networks. In practice, it is desired that these graphs retain two main properties: sparseness and high connectivity. This is equivalent to having relatively short distances between two nodes but with an overall small number of edges. These graphs are called expander graphs and the main motivation behind studying them is the efficient network structure that they can produce due to their properties. We are specifically …


Fast Monte Carlo Algorithms For Computing A Low-Rank Approximation To A Matrix, Vlad S. Burca Apr 2014

Fast Monte Carlo Algorithms For Computing A Low-Rank Approximation To A Matrix, Vlad S. Burca

Senior Theses and Projects

Many of today's applications deal with big quantities of data; from DNA analysis algorithms, to image processing and movie recommendation algorithms. Most of these systems store the data in very large matrices. In order to perform analysis on the collected data, these big matrices have to be stored in the RAM (random-access memory) of the computing system. But this is a very expensive process since RAM is a scarce computational resource. Ideally, one would like to be able to store most of the data matrices on the memory disk (hard disk drive) while loading only the necessary parts of the …


Fast Algorithms For Analyzing Partially Ranked Data, Matthew Mcdermott Jan 2014

Fast Algorithms For Analyzing Partially Ranked Data, Matthew Mcdermott

HMC Senior Theses

Imagine your local creamery administers a survey asking their patrons to choose their five favorite ice cream flavors. Any data collected by this survey would be an example of partially ranked data, as the set of all possible flavors is only ranked into subsets of the chosen flavors and the non-chosen flavors. If the creamery asks you to help analyze this data, what approaches could you take? One approach is to use the natural symmetries of the underlying data space to decompose any data set into smaller parts that can be more easily understood. In this work, I describe …