Open Access. Powered by Scholars. Published by Universities.®

Other Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms

Theses/Dissertations

Articles 1 - 13 of 13

Full-Text Articles in Other Applied Mathematics

Data And Algorithmic Modeling Approaches To Count Data, Andraya Hack May 2022

Data And Algorithmic Modeling Approaches To Count Data, Andraya Hack

Honors College Theses

Various techniques are used to create predictions based on count data. This type of data takes the form of a non-negative integers such as the number of claims an insurance policy holder may make. These predictions can allow people to prepare for likely outcomes. Thus, it is important to know how accurate the predictions are. Traditional statistical approaches for predicting count data include Poisson regression as well as negative binomial regression. Both methods also have a zero-inflated version that can be used when the data has an overabundance of zeros. Another procedure is to use computer algorithms, also known as …


Decoding Cyclic Codes Via Gröbner Bases, Eduardo Sosa Jan 2022

Decoding Cyclic Codes Via Gröbner Bases, Eduardo Sosa

Honors Theses

In this paper, we analyze the decoding of cyclic codes. First, we introduce linear and cyclic codes, standard decoding processes, and some standard theorems in coding theory. Then, we will introduce Gr¨obner Bases, and describe their connection to the decoding of cyclic codes. Finally, we go in-depth into how we decode cyclic codes using the key equation, and how a breakthrough by A. Brinton Cooper on decoding BCH codes using Gr¨obner Bases gave rise to the search for a polynomial-time algorithm that could someday decode any cyclic code. We discuss the different approaches taken toward developing such an algorithm and …


Multi-Valued Solutions For The Equation Of Motion, Darcy-Jordan Model, As A Cauchy Problem: A Shocking Event, Chandler Shimp Oct 2021

Multi-Valued Solutions For The Equation Of Motion, Darcy-Jordan Model, As A Cauchy Problem: A Shocking Event, Chandler Shimp

Master's Theses

Shocks are physical phenomenon that occur quite often around us. In this thesis we examine the occurrence of shocks in finite amplitude acoustic waves from a numerical perspective. These waves, or jump discontinuities, yield ill-behaved solutions when solved numerically. This study takes on the challenge of finding both single- and multi-valued solutions.

The previously unsolved problem in this study is the representation of the Equation of Motion (EoM) in the form of the Darcy-Jordan model (DJM) and expressed as a dimensionless IVP Cauchy problem. Prior attempts to solve have resulted only in implicit solutions or explicit solutions with certain initial …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Optimal Construction Of A Layer-Ordered Heap And Its Applications, Jake Pennington Jan 2021

Optimal Construction Of A Layer-Ordered Heap And Its Applications, Jake Pennington

Graduate Student Theses, Dissertations, & Professional Papers

The layer-ordered heap (LOH) is a simple data structure used in algorithms that perform optimal top-$k$ on $X+Y$, algorithms with the best known runtime for top-$k$ on $X_1+X_2+\cdots+X_m$, and the fastest method in practice for computing the most abundant isotopologue peaks in a chemical compound. In the analysis of these algorithms, the rank, $\alpha$, has been treated as a constant and $n$, the size of the array, has been treated as the sole parameter. Here, we explore the algorithmic complexity of LOH construction with $\alpha$ as a parameter, introduce a few algorithms for constructing LOHs, analyze their complexity in both …


Triple Non-Negative Matrix Factorization Technique For Sentiment Analysis And Topic Modeling, Alexander A. Waggoner Jan 2017

Triple Non-Negative Matrix Factorization Technique For Sentiment Analysis And Topic Modeling, Alexander A. Waggoner

CMC Senior Theses

Topic modeling refers to the process of algorithmically sorting documents into categories based on some common relationship between the documents. This common relationship between the documents is considered the “topic” of the documents. Sentiment analysis refers to the process of algorithmically sorting a document into a positive or negative category depending whether this document expresses a positive or negative opinion on its respective topic. In this paper, I consider the open problem of document classification into a topic category, as well as a sentiment category. This has a direct application to the retail industry where companies may want to scour …


Network Analytics For The Mirna Regulome And Mirna-Disease Interactions, Joseph Jayakar Nalluri Jan 2017

Network Analytics For The Mirna Regulome And Mirna-Disease Interactions, Joseph Jayakar Nalluri

Theses and Dissertations

miRNAs are non-coding RNAs of approx. 22 nucleotides in length that inhibit gene expression at the post-transcriptional level. By virtue of this gene regulation mechanism, miRNAs play a critical role in several biological processes and patho-physiological conditions, including cancers. miRNA behavior is a result of a multi-level complex interaction network involving miRNA-mRNA, TF-miRNA-gene, and miRNA-chemical interactions; hence the precise patterns through which a miRNA regulates a certain disease(s) are still elusive. Herein, I have developed an integrative genomics methods/pipeline to (i) build a miRNA regulomics and data analytics repository, (ii) create/model these interactions into networks and use optimization techniques, motif …


Network Inference Driven Drug Discovery, Gergely Zahoránszky-Kőhalmi, Tudor I. Oprea Md, Phd, Cristian G. Bologa Phd, Subramani Mani Md, Phd, Oleg Ursu Phd Nov 2016

Network Inference Driven Drug Discovery, Gergely Zahoránszky-Kőhalmi, Tudor I. Oprea Md, Phd, Cristian G. Bologa Phd, Subramani Mani Md, Phd, Oleg Ursu Phd

Biomedical Sciences ETDs

The application of rational drug design principles in the era of network-pharmacology requires the investigation of drug-target and target-target interactions in order to design new drugs. The presented research was aimed at developing novel computational methods that enable the efficient analysis of complex biomedical data and to promote the hypothesis generation in the context of translational research. The three chapters of the Dissertation relate to various segments of drug discovery and development process.

The first chapter introduces the integrated predictive drug discovery platform „SmartGraph”. The novel collaborative-filtering based algorithm „Target Based Recommender (TBR)” was developed in the framework of this …


Algorithms To Compute Characteristic Classes, Martin Helmer Jun 2015

Algorithms To Compute Characteristic Classes, Martin Helmer

Electronic Thesis and Dissertation Repository

In this thesis we develop several new algorithms to compute characteristics classes in a variety of settings. In addition to algorithms for the computation of the Euler characteristic, a classical topological invariant, we also give algorithms to compute the Segre class and Chern-Schwartz-MacPherson (CSM) class. These invariants can in turn be used to compute other common invariants such as the Chern-Fulton class (or the Chern class in smooth cases).

We begin with subschemes of a projective space over an algebraically closed field of characteristic zero. In this setting we give effective algorithms to compute the CSM class, Segre class and …


Optimizing The Analysis Of Electroencephalographic Data By Dynamic Graphs, Mehrsasadat Golestaneh Apr 2014

Optimizing The Analysis Of Electroencephalographic Data By Dynamic Graphs, Mehrsasadat Golestaneh

Electronic Thesis and Dissertation Repository

The brain’s underlying functional connectivity has been recently studied using tools offered by graph theory and network theory. Although the primary research focus in this area has so far been mostly on static graphs, the complex and dynamic nature of the brain’s underlying mechanism has initiated the usage of dynamic graphs, providing groundwork for time sensi- tive and finer investigations. Studying the topological reconfiguration of these dynamic graphs is done by exploiting a pool of graph metrics, which describe the network’s characteristics at different scales. However, considering the vast amount of data generated by neuroimaging tools, heavy computation load and …


Construction Algorithms For Expander Graphs, Vlad S. Burca Apr 2014

Construction Algorithms For Expander Graphs, Vlad S. Burca

Senior Theses and Projects

Graphs are mathematical objects that are comprised of nodes and edges that connect them. In computer science they are used to model concepts that exhibit network behaviors, such as social networks, communication paths or computer networks. In practice, it is desired that these graphs retain two main properties: sparseness and high connectivity. This is equivalent to having relatively short distances between two nodes but with an overall small number of edges. These graphs are called expander graphs and the main motivation behind studying them is the efficient network structure that they can produce due to their properties. We are specifically …


Fast Monte Carlo Algorithms For Computing A Low-Rank Approximation To A Matrix, Vlad S. Burca Apr 2014

Fast Monte Carlo Algorithms For Computing A Low-Rank Approximation To A Matrix, Vlad S. Burca

Senior Theses and Projects

Many of today's applications deal with big quantities of data; from DNA analysis algorithms, to image processing and movie recommendation algorithms. Most of these systems store the data in very large matrices. In order to perform analysis on the collected data, these big matrices have to be stored in the RAM (random-access memory) of the computing system. But this is a very expensive process since RAM is a scarce computational resource. Ideally, one would like to be able to store most of the data matrices on the memory disk (hard disk drive) while loading only the necessary parts of the …


Fast Algorithms For Analyzing Partially Ranked Data, Matthew Mcdermott Jan 2014

Fast Algorithms For Analyzing Partially Ranked Data, Matthew Mcdermott

HMC Senior Theses

Imagine your local creamery administers a survey asking their patrons to choose their five favorite ice cream flavors. Any data collected by this survey would be an example of partially ranked data, as the set of all possible flavors is only ranked into subsets of the chosen flavors and the non-chosen flavors. If the creamery asks you to help analyze this data, what approaches could you take? One approach is to use the natural symmetries of the underlying data space to decompose any data set into smaller parts that can be more easily understood. In this work, I describe …