Open Access. Powered by Scholars. Published by Universities.®

Other Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Other Applied Mathematics

A Novel Correction For The Adjusted Box-Pierce Test, Sidy Danioko, Jianwei Zheng, Kyle Anderson, Alexander Barrett, Cyril S. Rakovski May 2022

A Novel Correction For The Adjusted Box-Pierce Test, Sidy Danioko, Jianwei Zheng, Kyle Anderson, Alexander Barrett, Cyril S. Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

The classical Box-Pierce and Ljung-Box tests for auto-correlation of residuals possess severe deviations from nominal type I error rates. Previous studies have attempted to address this issue by either revising existing tests or designing new techniques. The Adjusted Box-Pierce achieves the best results with respect to attaining type I error rates closer to nominal values. This research paper proposes a further correction to the adjusted Box-Pierce test that possesses near perfect type I error rates. The approach is based on an inflation of the rejection region for all sample sizes and lags calculated via a linear model applied to simulated …


Application Of Randomness In Finance, Jose Sanchez, Daanial Ahmad, Satyanand Singh May 2021

Application Of Randomness In Finance, Jose Sanchez, Daanial Ahmad, Satyanand Singh

Publications and Research

Brownian Motion which is also considered to be a Wiener process and can be thought of as a random walk. In our project we had briefly discussed the fluctuations of financial indices and related it to Brownian Motion and the modeling of Stock prices.


A More Powerful Unconditional Exact Test Of Homogeneity For 2 × C Contingency Table Analysis, Louis Ehwerhemuepha, Heng Sok, Cyril Rakovski Apr 2019

A More Powerful Unconditional Exact Test Of Homogeneity For 2 × C Contingency Table Analysis, Louis Ehwerhemuepha, Heng Sok, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

The classical unconditional exact p-value test can be used to compare two multinomial distributions with small samples. This general hypothesis requires parameter estimation under the null which makes the test severely conservative. Similar property has been observed for Fisher's exact test with Barnard and Boschloo providing distinct adjustments that produce more powerful testing approaches. In this study, we develop a novel adjustment for the conservativeness of the unconditional multinomial exact p-value test that produces nominal type I error rate and increased power in comparison to all alternative approaches. We used a large simulation study to empirically estimate the …


Score Test And Likelihood Ratio Test For Zero-Inflated Binomial Distribution And Geometric Distribution, Xiaogang Dai Apr 2018

Score Test And Likelihood Ratio Test For Zero-Inflated Binomial Distribution And Geometric Distribution, Xiaogang Dai

Masters Theses & Specialist Projects

The main purpose of this thesis is to compare the performance of the score test and the likelihood ratio test by computing type I errors and type II errors when the tests are applied to the geometric distribution and inflated binomial distribution. We first derive test statistics of the score test and the likelihood ratio test for both distributions. We then use the software package R to perform a simulation to study the behavior of the two tests. We derive the R codes to calculate the two types of error for each distribution. We create lots of samples to approximate …


Predicting The Next Us President By Simulating The Electoral College, Boyan Kostadinov Jan 2018

Predicting The Next Us President By Simulating The Electoral College, Boyan Kostadinov

Publications and Research

We develop a simulation model for predicting the outcome of the US Presidential election based on simulating the distribution of the Electoral College. The simulation model has two parts: (a) estimating the probabilities for a given candidate to win each state and DC, based on state polls, and (b) estimating the probability that a given candidate will win at least 270 electoral votes, and thus win the White House. All simulations are coded using the high-level, open-source programming language R. One of the goals of this paper is to promote computational thinking in any STEM field by illustrating how probabilistic …


Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko Dec 2017

Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Improved knowledge of the magnetic field dependent flow properties of nanoparticle-based magnetic fluids is critical to the design of biomedical applications, including drug delivery and cell sorting. To probe the rheology of ferrofluid on a sub-millimeter scale, we examine the paths of 550 μm diameter glass spheres falling due to gravity in dilute ferrofluid, imposing a uniform magnetic field at an angle with respect to the vertical. Visualization of the spheres’ trajectories is achieved using high resolution X-ray phase-contrast imaging, allowing measurement of a terminal velocity while simultaneously revealing the formation of an array of long thread-like accumulations of magnetic …


Gis-Integrated Mathematical Modeling Of Social Phenomena At Macro- And Micro- Levels—A Multivariate Geographically-Weighted Regression Model For Identifying Locations Vulnerable To Hosting Terrorist Safe-Houses: France As Case Study, Elyktra Eisman Nov 2015

Gis-Integrated Mathematical Modeling Of Social Phenomena At Macro- And Micro- Levels—A Multivariate Geographically-Weighted Regression Model For Identifying Locations Vulnerable To Hosting Terrorist Safe-Houses: France As Case Study, Elyktra Eisman

FIU Electronic Theses and Dissertations

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to …


Shadow Casting Phenomena At Newgrange, Frank Prendergast Jan 1991

Shadow Casting Phenomena At Newgrange, Frank Prendergast

Articles

A digital model of the Newgrange passage tomb and surrounding ring of monoliths known as the Great Circle is used to investigate sunrise shadow casting phenomena at the monument. Diurnal variation in shadow directions and lengths are analysed for their potential use in the Bronze Age to indicate the passage of seasonal time. Computer-aided simulations are developed from a photogrammetric survey to accurately show how three of the largest monoliths, located closest to the tomb entrance and archaeologically coded GC1, GC-1 and GC-2, cast their shadows onto the vertical face of the entrance kerbstone, coded K1. The phenomena occur at …