Open Access. Powered by Scholars. Published by Universities.®

Dynamic Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Dynamic Systems

The Revised Nim For Solving The Non-Linear System Variant Boussinesq Equations And Comparison With Nim, Oday Ahmed Jasim Dec 2020

The Revised Nim For Solving The Non-Linear System Variant Boussinesq Equations And Comparison With Nim, Oday Ahmed Jasim

Karbala International Journal of Modern Science

This research aims to guide researchers to use a new method, and it is the Revised New Iterative Method (RNIM) to solve partial differential equation systems and apply them to solve problems in various disciplines such as chemistry, physics, engineering and medicine. In this paper, the numerical solutions of the nonlinear Variable Boussinesq Equation System (VBE) were obtained using a new modified iterative method (RNIM); this was planned by (Bhaleker and Datterder-Gejj). A numerical solution to the Variable Boussinesq Equation System (VBE) was also found using a widely known method, a new iterative method (NIM). By comparing the numerical solutions …


Controlling And Synchronizing Combined Effect Of Chaos Generated In Generalized Lotka-Volterra Three Species Biological Model Using Active Control Design, Taqseer Khan, Harindri Chaudhary Dec 2020

Controlling And Synchronizing Combined Effect Of Chaos Generated In Generalized Lotka-Volterra Three Species Biological Model Using Active Control Design, Taqseer Khan, Harindri Chaudhary

Applications and Applied Mathematics: An International Journal (AAM)

In this work, we study hybrid projective combination synchronization scheme among identical chaotic generalized Lotka-Volterra three species biological systems using active control design. We consider here generalized Lotka-Volterra system containing two predators and one prey population existing in nature. An active control design is investigated which is essentially based on Lyapunov stability theory. The considered technique derives the global asymptotic stability using hybrid projective combination synchronization technique. In addition, the presented simulation outcomes and graphical results illustrate the validation of our proposed scheme. Prominently, both the analytical and computational results agree excellently. Comparisons versus others strategies exhibiting our proposed technique …


On An Ecological Model Of Mutualisim Between Two Species With A Mortal Predator, Srinivasarao Thota Dec 2020

On An Ecological Model Of Mutualisim Between Two Species With A Mortal Predator, Srinivasarao Thota

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we study an ecological model of a three-space food chain consists of two logically growing mutual species and third species acts as a predator to second mutual species with Holling type II functional response. This model is constituted by a system of nonlinear decoupled ordinary differential equations. By using perturbed method, we identify the nature of the system at each equilibrium point and also global stability is investigated for this model using Lypanov function at the possible equilibrium points.


Stability Analysis Of Circular Robe’S R3bp With Finite Straight Segment And Viscosity, Bhavneet Kaur, Sumit Kumar, Shipra Chauhan, Dinesh Kumar Dec 2020

Stability Analysis Of Circular Robe’S R3bp With Finite Straight Segment And Viscosity, Bhavneet Kaur, Sumit Kumar, Shipra Chauhan, Dinesh Kumar

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, the effect of viscous force on the linear stability of equilibrium points of the circular Robe’s restricted three-body problem (CRR3BP) with smaller primary as a finite straight segment is studied. The present model comprises of a bigger primary m*1 which is a rigid spherical shell filled with a homogeneous incompressible fluid of density ρ1 and the smaller primary m2 lies outside the shell. The infinitesimal mass m3 is a small solid sphere of density ρ3 moving inside m*1. The pertinent equations of motion of m3 are derived …