Open Access. Powered by Scholars. Published by Universities.®

Dynamic Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Dynamic Systems

Two Dimensional Mathematical Study Of Flow Dynamics Through Emphysemic Lung, Jyoti Kori, Pratibha _ Jun 2019

Two Dimensional Mathematical Study Of Flow Dynamics Through Emphysemic Lung, Jyoti Kori, Pratibha _

Applications and Applied Mathematics: An International Journal (AAM)

There are various lung diseases, such as chronic obstructive pulmonary disease, asthma, fibrosis, emphysema etc., occurred due to deposition of different shape and size particles. Among them we focused on flow dynamics of viscous air through an emphysemic lung. We considered lung as a porous medium and porosity is a function of tidal volume. Two dimensional generalized equation of momentum is used to study the flow of air and equation of motion is used to study the flow of nanoparticles of elongated shape. Darcy term for flow in porous media and shape factor for nonspherical nanoparticles are used in mathematical …


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic Feb 2015

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling moment …


Bound For The Complex Growth Rate In Thermosolutal Convection Coupled With Cross-Diffusions, Hari Mohan Sharma Dec 2010

Bound For The Complex Growth Rate In Thermosolutal Convection Coupled With Cross-Diffusions, Hari Mohan Sharma

Applications and Applied Mathematics: An International Journal (AAM)

Thermosolutal convection problem of the Veronis’ type coupled with cross–diffusion is considered in the present paper. A semi -circle theorem that prescribes upper limit for the complex growth rate of oscillatory motions of neutral or growing amplitude in such a manner that it naturally culminates in sufficient conditions precluding the non- existence of such motions is derived. Further, results for thermosolutal convection problems with or without the individual consideration of Dufour and Soret effects follow as a consequence.