Open Access. Powered by Scholars. Published by Universities.®

Dynamic Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Dynamic Systems

Algorithm For Calculating The Parameters Of A Multi-Position Electromagnetic Linear Mechatronic Module, Nazarov Khayriddin Nuritdinovich, Matyokubov Nurbek Rustamovich, Temurbek Omonboyevich Rakhimov Dec 2021

Algorithm For Calculating The Parameters Of A Multi-Position Electromagnetic Linear Mechatronic Module, Nazarov Khayriddin Nuritdinovich, Matyokubov Nurbek Rustamovich, Temurbek Omonboyevich Rakhimov

Chemical Technology, Control and Management

Currently, in the world in the field of science, engineering and technology, including in mechatronics and robotics, the creation of multi-coordinate mechatronic systems that perform power and control functions is becoming of paramount importance, this is due to a number of important positive qualities of the systems, such as simplicity and compactness of the design, the possibility of obtaining significant efforts, high accuracy and stability of the establishment of fixed positions, ease of control and high reliability. This article presents the calculation of the parameters of multi-position mechatronic modules based on linear execution elements. In the construction of this model, …


Convergence Properties Of Solutions Of A Length-Structured Density-Dependent Model For Fish, Geigh Zollicoffer Dec 2021

Convergence Properties Of Solutions Of A Length-Structured Density-Dependent Model For Fish, Geigh Zollicoffer

Rose-Hulman Undergraduate Mathematics Journal

We numerically study solutions to a length-structured matrix model for fish populations in which the probability that a fish grows into the next length class is a decreasing nonlinear function of the total biomass of the population. We make conjectures about the convergence properties of solutions to this equation, and give numerical simulations which support these conjectures. We also study the distribution of biomass in the different age classes as a function of the total biomass.


Euler's Three-Body Problem, Sylvio R. Bistafa Aug 2021

Euler's Three-Body Problem, Sylvio R. Bistafa

Euleriana

In physics and astronomy, Euler's three-body problem is to solve for the motion of a body that is acted upon by the gravitational field of two other bodies. This problem is named after Leonhard Euler (1707-1783), who discussed it in memoirs published in the 1760s. In these publications, Euler found that the parameter that controls the relative distances among three collinear bodies is given by a quintic equation. Later on, in 1772, Lagrange dealt with the same problem, and demonstrated that for any three masses with circular orbits, there are two special constant-pattern solutions, one where the three bodies remain …


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic Feb 2015

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling moment …


Improving Airplane Touchdown Control By Utilizing The Adverse Elevator Effect, Nihad E. Daidzic Ph.D., Sc.D. Oct 2014

Improving Airplane Touchdown Control By Utilizing The Adverse Elevator Effect, Nihad E. Daidzic Ph.D., Sc.D.

International Journal of Aviation, Aeronautics, and Aerospace

The main objective of this original research article is to understand the short-term dynamic behavior of the transport-category airplane during landing flare elevator control application. Increasing the pitch angle to arrest the sink rate, the elevator will have to produce negative lift to rotate the airplane’s nose upward. This has an immediate adverse effect of initially accelerating airplane downward. A mathematical model of landing flare based on the flat-Earth longitudinal dynamics of rigid airplane was developed which is realistic only on very short time-scales as pitch stiffness and damping were neglected. Pilot control scenarios using impulse and step elevator pull-up …