Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Applied Mathematics

Analyzing Domain Of Convergence For Broyden’S Method, Michael Bonthron Jun 2022

Analyzing Domain Of Convergence For Broyden’S Method, Michael Bonthron

College of Science and Health Theses and Dissertations

Broyden’s method is a quasi-Newton iterative method used to find roots of non-linear systems of equations. Research has shown and improved the rate of convergence for special cases and specific applications of the method. However, there is limited literature regarding the well-posedness of the method. In practice, a numerical method must reliably converge to the appropriate root. This paper will discuss the domain of attraction for the roots of a system found by using Broyden’s method. A method of approximating the radius of convergence of a root will be described which considers the largest disk centered at the root such …


Sparse Spectral-Tau Method For The Two-Dimensional Helmholtz Problem Posed On A Rectangular Domain, Gabriella M. Dalton Jun 2022

Sparse Spectral-Tau Method For The Two-Dimensional Helmholtz Problem Posed On A Rectangular Domain, Gabriella M. Dalton

Mathematics & Statistics ETDs

Within recent decades, spectral methods have become an important technique in numerical computing for solving partial differential equations. This is due to their superior accuracy when compared to finite difference and finite element methods. For such spectral approximations, the convergence rate is solely dependent on the smoothness of the solution yielding the potential to achieve spectral accuracy. We present an iterative approach for solving the two-dimensional Helmholtz problem posed on a rectangular domain subject to Dirichlet boundary conditions that is well-conditioned, low in memory, and of sub-quadratic complexity. The proposed approach spectrally approximates the partial differential equation by means of …


On The Consistency Of Alternative Finite Difference Schemes For The Heat Equation, Tran April Apr 2022

On The Consistency Of Alternative Finite Difference Schemes For The Heat Equation, Tran April

Rose-Hulman Undergraduate Mathematics Journal

While the well-researched Finite Difference Method (FDM) discretizes every independent variable into algebraic equations, Method of Lines discretizes all but one dimension, leaving an Ordinary Differential Equation (ODE) in the remaining dimension. That way, ODE's numerical methods can be applied to solve Partial Differential Equations (PDEs). In this project, Linear Multistep Methods and Method of Lines are used to numerically solve the heat equation. Specifically, the explicit Adams-Bashforth method and the implicit Backward Differentiation Formulas are implemented as Alternative Finite Difference Schemes. We also examine the consistency of these schemes.


Variational Data Assimilation For Two Interface Problems, Xuejian Li Jan 2022

Variational Data Assimilation For Two Interface Problems, Xuejian Li

Doctoral Dissertations

“Variational data assimilation (VDA) is a process that uses optimization techniques to determine an initial condition of a dynamical system such that its evolution best fits the observed data. In this dissertation, we develop and analyze the variational data assimilation method with finite element discretization for two interface problems, including the Parabolic Interface equation and the Stokes-Darcy equation with the Beavers-Joseph interface condition. By using Tikhonov regularization and formulating the VDA into an optimization problem, we establish the existence, uniqueness and stability of the optimal solution for each concerned case. Based on weak formulations of the Parabolic Interface equation and …