Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Applied Mathematics

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire Aug 2021

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire

Dissertations

Thin film dynamics, particularly on the nanoscale, is a topic of extensive interest. The process by which thin liquids evolve is far from trivial and can lead to dewetting and drop formation. Understanding this process involves not only resolving the fluid mechanical aspects of the problem, but also requires the coupling of other physical processes, including liquid-solid interactions, thermal transport, and dependence of material parameters on temperature and material composition. The focus of this dissertation is on the mathematical modeling and simulation of nanoscale liquid metal films, which are deposited on thermally conductive substrates, liquefied by laser heating, and subsequently …


Finite Difference Schemes For Integral Equations With Minimal Regularity Requirements, Wesley Cameron Davis Jul 2021

Finite Difference Schemes For Integral Equations With Minimal Regularity Requirements, Wesley Cameron Davis

Mathematics & Statistics Theses & Dissertations

Volterra integral equations arise in a variety of applications in modern physics and engineering, namely in interactions that contain a memory term. Classical formulations of these problems are largely inflexible when considering non-homogeneous media, which can be problematic when considering long term interactions of real-world applications. The use of fractional derivative and integral terms naturally relax these restrictions in a natural way to consider these problems in a more general setting. One major drawback to the use of fractional derivatives and integrals in modeling is the regularity requirement for functions, where we can no longer assume that functions are as …


The Effect Of Initial Conditions On The Weather Research And Forecasting Model, Aaron D. Baker May 2021

The Effect Of Initial Conditions On The Weather Research And Forecasting Model, Aaron D. Baker

Electronic Theses and Dissertations

Modeling our atmosphere and determining forecasts using numerical methods has been a challenge since the early 20th Century. Most models use a complex dynamical system of equations that prove difficult to solve by hand as they are chaotic by nature. When computer systems became more widely adopted and available, approximating the solution of these equations, numerically, became easier as computational power increased. This advancement in computing has caused numerous weather models to be created and implemented across the world. However a challenge of approximating these solutions accurately still exists as each model have varying set of equations and variables to …