Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Masters Theses & Specialist Projects

Discipline
Keyword
Publication Year

Articles 1 - 30 of 33

Full-Text Articles in Applied Mathematics

A Comparison Of Computational Perfusion Imaging Techniques, Shaharina Shoha Aug 2023

A Comparison Of Computational Perfusion Imaging Techniques, Shaharina Shoha

Masters Theses & Specialist Projects

Dynamic contrast agent magnetic resonance perfusion imaging plays a vital role in various medical applications, including tumor grading, distinguishing between tumor types, guiding procedures, and evaluating treatment efficacy. Extracting essential biological parameters, such as cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT), from acquired imaging data is crucial for making critical treatment decisions. However, the accuracy of these parameters can be compromised by the inherent noise and artifacts present in the source images.

This thesis focuses on addressing the challenges associated with parameter estimation in dynamic contrast agent magnetic resonance perfusion imaging. Specifically, we aim …


Robust Sensor Design For The Novel Reduced Models Of The Mead-Marcus Sandwich Beam Equation, Ahmet Aydin Jul 2022

Robust Sensor Design For The Novel Reduced Models Of The Mead-Marcus Sandwich Beam Equation, Ahmet Aydin

Masters Theses & Specialist Projects

Novel space-discretized Finite Differences-based model reductions are proposed for the partial differential equations (PDE) model of a multi-layer Mead-Marcus-type beam with (i) hinged-hinged and (ii) clamped-free boundary conditions. The PDE model describes transverse vibrations for a sandwich beam whose alternating outer elastic layers constrain viscoelastic core layers, which allow transverse shear. The major goal of this project is to design a single boundary sensor, placed at the tip of the beam, to control the overall dynamics on the beam.

For (i), it is first shown that the PDE model is exactly observable by the so-called nonharmonic Fourier series approach. However, …


Analysis Of Boundary Observability Of Strongly Coupled One-Dimensional Wave Equations With Mixed Boundary Conditions, Wilson Dennis Horner Apr 2021

Analysis Of Boundary Observability Of Strongly Coupled One-Dimensional Wave Equations With Mixed Boundary Conditions, Wilson Dennis Horner

Masters Theses & Specialist Projects

*see note below

In control theory, the time it takes to receive a signal after it is sent is referred to as the observation time. For certain types of materials, the observation time to receive a wave signal differs depending on a variety of factors, such as material density, flexibility, speed of the wave propagation, etc. Suppose we have a strongly coupled system of two wave equations describing the longitudinal vibrations on a piezoelectric beam of length L. These two wave equations have non-identical wave propagation speeds c1 and c2. First, we prove the exact observability inequality with the optimal …


H-Discrete Fractional Model Of Tumor Growth And Anticancer Effects Of Mono And Combination Therapies, Kamala Dadashova Apr 2020

H-Discrete Fractional Model Of Tumor Growth And Anticancer Effects Of Mono And Combination Therapies, Kamala Dadashova

Masters Theses & Specialist Projects

In this thesis, we focus on h–discrete and h–discrete fractional representation of a pharmacokinetics-pharmacodynamics (PK-PD) model which describes tumor growth considering time on hNa, where h>0. First, we introduce some definitions, lemmas and theorems on both h–discrete and h–discrete fractional calculus in the preliminary section. In Chapter 3, we work on the PD model with delay by exam ining nabla h–discrete equations and nabla h–discrete fractional equations as well as variation of constants formulas, accordingly. We introduce our model and solve it using theorems we proved in the last section of the indicated chapter. When we do simulation for …


Parameter Estimation And Optimal Design Techniques To Analyze A Mathematical Model In Wound Healing, Nigar Karimli Apr 2019

Parameter Estimation And Optimal Design Techniques To Analyze A Mathematical Model In Wound Healing, Nigar Karimli

Masters Theses & Specialist Projects

For this project, we use a modified version of a previously developed mathematical model, which describes the relationships among matrix metalloproteinases (MMPs), their tissue inhibitors (TIMPs), and extracellular matrix (ECM). Our ultimate goal is to quantify and understand differences in parameter estimates between patients in order to predict future responses and individualize treatment for each patient. By analyzing parameter confidence intervals and confidence and prediction intervals for the state variables, we develop a parameter space reduction algorithm that results in better future response predictions for each individual patient. Moreover, use of another subset selection method, namely Structured Covariance Analysis, that …


Score Test And Likelihood Ratio Test For Zero-Inflated Binomial Distribution And Geometric Distribution, Xiaogang Dai Apr 2018

Score Test And Likelihood Ratio Test For Zero-Inflated Binomial Distribution And Geometric Distribution, Xiaogang Dai

Masters Theses & Specialist Projects

The main purpose of this thesis is to compare the performance of the score test and the likelihood ratio test by computing type I errors and type II errors when the tests are applied to the geometric distribution and inflated binomial distribution. We first derive test statistics of the score test and the likelihood ratio test for both distributions. We then use the software package R to perform a simulation to study the behavior of the two tests. We derive the R codes to calculate the two types of error for each distribution. We create lots of samples to approximate …


Controllability And Observability Of The Discrete Fractional Linear State-Space Model, Duc M. Nguyen Apr 2018

Controllability And Observability Of The Discrete Fractional Linear State-Space Model, Duc M. Nguyen

Masters Theses & Specialist Projects

This thesis aims to investigate the controllability and observability of the discrete fractional linear time-invariant state-space model. First, we will establish key concepts and properties which are the tools necessary for our task. In the third chapter, we will discuss the discrete state-space model and set up the criteria for these two properties. Then, in the fourth chapter, we will attempt to apply these criteria to the discrete fractional model. The general flow of our objectives is as follows: we start with the first-order linear difference equation, move on to the discrete system, then the fractional difference equation, and finally …


Runs Of Identical Outcomes In A Sequence Of Bernoulli Trials, Matthew Riggle Apr 2018

Runs Of Identical Outcomes In A Sequence Of Bernoulli Trials, Matthew Riggle

Masters Theses & Specialist Projects

The Bernoulli distribution is a basic, well-studied distribution in probability. In this thesis, we will consider repeated Bernoulli trials in order to study runs of identical outcomes. More formally, for t ∈ N, we let Xt ∼ Bernoulli(p), where p is the probability of success, q = 1 − p is the probability of failure, and all Xt are independent. Then Xt gives the outcome of the tth trial, which is 1 for success or 0 for failure. For n, m ∈ N, we define Tn to be the number of trials needed to first observe n …


Iterative Methods To Solve Systems Of Nonlinear Algebraic Equations, Md Shafiful Alam Apr 2018

Iterative Methods To Solve Systems Of Nonlinear Algebraic Equations, Md Shafiful Alam

Masters Theses & Specialist Projects

Iterative methods have been a very important area of study in numerical analysis since the inception of computational science. Their use ranges from solving algebraic equations to systems of differential equations and many more. In this thesis, we discuss several iterative methods, however our main focus is Newton's method. We present a detailed study of Newton's method, its order of convergence and the asymptotic error constant when solving problems of various types as well as analyze several pitfalls, which can affect convergence. We also pose some necessary and sufficient conditions on the function f for higher order of convergence. Different …


Analysis And Implementation Of Numerical Methods For Solving Ordinary Differential Equations, Muhammad Sohel Rana Oct 2017

Analysis And Implementation Of Numerical Methods For Solving Ordinary Differential Equations, Muhammad Sohel Rana

Masters Theses & Specialist Projects

Numerical methods to solve initial value problems of differential equations progressed quite a bit in the last century. We give a brief summary of how useful numerical methods are for ordinary differential equations of first and higher order. In this thesis both computational and theoretical discussion of the application of numerical methods on differential equations takes place. The thesis consists of an investigation of various categories of numerical methods for the solution of ordinary differential equations including the numerical solution of ordinary differential equations from a number of practical fields such as equations arising in population dynamics and astrophysics. It …


Discrete Fractional Hermite-Hadamard Inequality, Aykut Arslan Apr 2017

Discrete Fractional Hermite-Hadamard Inequality, Aykut Arslan

Masters Theses & Specialist Projects

This thesis is comprised of three main parts: The Hermite-Hadamard inequality on discrete time scales, the fractional Hermite-Hadamard inequality, and Karush-Kuhn- Tucker conditions on higher dimensional discrete domains. In the first part of the thesis, Chapters 2 & 3, we define a convex function on a special time scale T where all the time points are not uniformly distributed on a time line. With the use of the substitution rules of integration we prove the Hermite-Hadamard inequality for convex functions defined on T. In the fourth chapter, we introduce fractional order Hermite-Hadamard inequality and characterize convexity in terms of this …


Stability Of Linear Difference Systems In Discrete And Fractional Calculus, Aynur Er Apr 2017

Stability Of Linear Difference Systems In Discrete And Fractional Calculus, Aynur Er

Masters Theses & Specialist Projects

The main purpose of this thesis is to define the stability of a system of linear difference equations of the form,

∇y(t) = Ay(t),

and to analyze the stability theory for such a system using the eigenvalues of the corresponding matrix A in nabla discrete calculus and nabla fractional discrete calculus. Discrete exponential functions and the Putzer algorithms are studied to examine the stability theorem.

This thesis consists of five chapters and is organized as follows. In the first chapter, the Gamma function and its properties are studied. Additionally, basic definitions, properties and some main theorem of discrete calculus are …


Analysis Of Discrete Fractional Operators And Discrete Fractional Rheological Models, Meltem Uyanik May 2015

Analysis Of Discrete Fractional Operators And Discrete Fractional Rheological Models, Meltem Uyanik

Masters Theses & Specialist Projects

This thesis is comprised of two main parts: Monotonicity results on discrete fractional operators and discrete fractional rheological constitutive equations. In the first part of the thesis, we introduce and prove new monotonicity concepts in discrete fractional calculus. In the remainder, we carry previous results about fractional rheological models to the discrete fractional case. The discrete method is expected to provide a better understanding of the concept than the continuous case as this has been the case in the past. In the first chapter, we give brief information about the main results. In the second chapter, we present some fundamental …


Application Of A Numerical Method And Optimal Control Theory To A Partial Differential Equation Model For A Bacterial Infection In A Chronic Wound, Stephen Guffey May 2015

Application Of A Numerical Method And Optimal Control Theory To A Partial Differential Equation Model For A Bacterial Infection In A Chronic Wound, Stephen Guffey

Masters Theses & Specialist Projects

In this work, we study the application both of optimal control techniques and a numerical method to a system of partial differential equations arising from a problem in wound healing. Optimal control theory is a generalization of calculus of variations, as well as the method of Lagrange Multipliers. Both of these techniques have seen prevalent use in the modern theories of Physics, Economics, as well as in the study of Partial Differential Equations. The numerical method we consider is the method of lines, a prominent method for solving partial differential equations. This method uses finite difference schemes to discretize the …


Boundary Problems For One And Two Dimensional Random Walks, Miky Wright May 2015

Boundary Problems For One And Two Dimensional Random Walks, Miky Wright

Masters Theses & Specialist Projects

This thesis provides a study of various boundary problems for one and two dimensional random walks. We first consider a one-dimensional random walk that starts at integer-valued height k > 0, with a lower boundary being the x-axis, and on each step moving downward with probability q being greater than or equal to the probability of going upward p. We derive the variance and the standard deviation of the number of steps T needed for the height to reach 0 from k, by first deriving the moment generating function of T. We then study two types of two-dimensional random walks with …


A Coupled Pde Model For The Morphological Instability Of A Multi-Component Thin Film During Surface Electromigration, Mahdi Bandegi Aug 2014

A Coupled Pde Model For The Morphological Instability Of A Multi-Component Thin Film During Surface Electromigration, Mahdi Bandegi

Masters Theses & Specialist Projects

In this thesis a model involving two coupled nonlinear PDEs is developed to study instability of a two-component metal film due to horizontal electric field and in a high-temperature environment similar to operational conditions of integrated circuits. The proposed model assumes the anisotropies of the diffusional mobilities for two atomic species, and negligible stresses in the film. The purpose of the modeling is to describe and understand the time-evolution of the shape of the film surface. Toward this end, the linear stability analysis (LSA) of the initially planar film surface with respect to small shape perturbations is performed. Such characteristics …


Analysis Of A Partial Differential Equation Model Of Surface Electromigration, Selahittin Cinar May 2014

Analysis Of A Partial Differential Equation Model Of Surface Electromigration, Selahittin Cinar

Masters Theses & Specialist Projects

A Partial Differential Equation (PDE) based model combining surface electromigration and wetting is developed for the analysis of the morphological instability of mono-crystalline metal films in a high temperature environment typical to operational conditions of microelectronic interconnects. The atomic mobility and surface energy of such films are anisotropic, and the model accounts for these material properties. The goal of modeling is to describe and understand the time-evolution of the shape of film surface. I will present the formulation of a nonlinear parabolic PDE problem for the height function h(x,t) of the film in the horizontal …


Green's Functions Of Discrete Fractional Calculus Boundary Value Problems And An Application Of Discrete Fractional Calculus To A Pharmacokinetic Model, Sutthirut Charoenphon May 2014

Green's Functions Of Discrete Fractional Calculus Boundary Value Problems And An Application Of Discrete Fractional Calculus To A Pharmacokinetic Model, Sutthirut Charoenphon

Masters Theses & Specialist Projects

Fractional calculus has been used as a research tool in the fields of pharmacology, biology, chemistry, and other areas [3]. The main purpose of this thesis is to calculate Green's functions of fractional difference equations, and to model problems in pharmacokinetics. We claim that the discrete fractional calculus yields the best prediction performance compared to the continuous fractional calculus in the application of a one-compartmental model of drug concentration. In Chapter 1, the Gamma function and its properties are discussed to establish a theoretical basis. Additionally, the basics of discrete fractional calculus are discussed using particular examples for further calculations. …


Floquet Theory On Banach Space, Fatimah Hassan Albasrawi May 2013

Floquet Theory On Banach Space, Fatimah Hassan Albasrawi

Masters Theses & Specialist Projects

In this thesis we study Floquet theory on a Banach space. We are concerned about the linear differential equation of the form: y'(t) = A(t)y(t), where t ∈ R, y(t) is a function with values in a Banach space X, and A(t) are linear, bounded operators on X. If the system is periodic, meaning A(t+ω) = A(t) for some period ω, then it is called a Floquet system. We will investigate the existence …


Analyzing And Solving Non-Linear Stochastic Dynamic Models On Non-Periodic Discrete Time Domains, Gang Cheng May 2013

Analyzing And Solving Non-Linear Stochastic Dynamic Models On Non-Periodic Discrete Time Domains, Gang Cheng

Masters Theses & Specialist Projects

Stochastic dynamic programming is a recursive method for solving sequential or multistage decision problems. It helps economists and mathematicians construct and solve a huge variety of sequential decision making problems in stochastic cases. Research on stochastic dynamic programming is important and meaningful because stochastic dynamic programming reflects the behavior of the decision maker without risk aversion; i.e., decision making under uncertainty. In the solution process, it is extremely difficult to represent the existing or future state precisely since uncertainty is a state of having limited knowledge. Indeed, compared to the deterministic case, which is decision making under certainty, the stochastic …


Minimizing Travel Time Through Multiple Media With Various Borders, Tonja Miick May 2013

Minimizing Travel Time Through Multiple Media With Various Borders, Tonja Miick

Masters Theses & Specialist Projects

This thesis consists of two main chapters along with an introduction and
conclusion. In the introduction, we address the inspiration for the thesis, which
originates in a common calculus problem wherein travel time is minimized across two media separated by a single, straight boundary line. We then discuss the correlation of this problem with physics via Snells Law. The first core chapter takes this idea and develops it to include the concept of two media with a circular border. To make the problem easier to discuss, we talk about it in terms of running and swimming speeds. We first address …


Nabla Fractional Calculus And Its Application In Analyzing Tumor Growth Of Cancer, Fang Wu Dec 2012

Nabla Fractional Calculus And Its Application In Analyzing Tumor Growth Of Cancer, Fang Wu

Masters Theses & Specialist Projects

This thesis consists of six chapters. In the first chapter, we review some basic definitions and concepts of fractional calculus. Then we introduce fractional difference equations involving the Riemann-Liouville operator of real number order between zero and one. In the second chapter, we apply the Brouwer fixed point and Contraction Mapping Theorems to prove that there exists a solution for up to the first order nabla fractional difference equation with an initial condition. In chapter three, we define a lower and an upper solution for up to the first order nabla fractional difference equation with an initial condition. Under certain …


On Nullification Of Knots And Links, Anthony Montemayor May 2012

On Nullification Of Knots And Links, Anthony Montemayor

Masters Theses & Specialist Projects

Motivated by the action of XER site-specific recombinase on DNA, this thesis will study the topological properties of a type of local crossing change on oriented knots and links called nullification.

One can define a distance between types of knots and links based on the minimum number of nullification moves necessary to change one to the other. Nullification distances form a class of isotopy invariants for oriented knots and links which may help inform potential reaction pathways for enzyme action on DNA. The minimal number of nullification moves to reach a è-component unlink will be called the è-nullification number.

This …


A Normal Truncated Skewed-Laplace Model In Stochastic Frontier Analysis, Junyi Wang May 2012

A Normal Truncated Skewed-Laplace Model In Stochastic Frontier Analysis, Junyi Wang

Masters Theses & Specialist Projects

Stochastic frontier analysis is an exciting method of economic production modeling that is relevant to hospitals, stock markets, manufacturing factories, and services. In this paper, we create a new model using the normal distribution and truncated skew-Laplace distribution, namely the normal-truncated skew-Laplace model. This is a generalized model of the normal-exponential case. Furthermore, we compute the true technical efficiency and estimated technical efficiency of the normal-truncated skewed-Laplace model. Also, we compare the technical efficiencies of normal-truncated skewed-Laplace model and normal-exponential model.


Generalized Bathtub Hazard Models For Binary-Transformed Climate Data, James Polcer May 2011

Generalized Bathtub Hazard Models For Binary-Transformed Climate Data, James Polcer

Masters Theses & Specialist Projects

In this study, we use a hazard-based modeling as an alternative statistical framework to time series methods as applied to climate data. Data collected from the Kentucky Mesonet will be used to study the distributional properties of the duration of high and low-energy wind events relative to an arbitrary threshold. Our objectiveswere to fit bathtub models proposed in literature, propose a generalized bathtub model, apply these models to Kentucky Mesonet data, and make recommendations as to feasibility of wind power generation. Using two different thresholds (1.8 and 10 mph respectively), results show that the Hjorth bathtub model consistently performed better …


An Algorithm To Generate Two-Dimensional Drawings Of Conway Algebraic Knots, Jen-Fu Tung May 2010

An Algorithm To Generate Two-Dimensional Drawings Of Conway Algebraic Knots, Jen-Fu Tung

Masters Theses & Specialist Projects

The problem of finding an efficient algorithm to create a two-dimensional embedding of a knot diagram is not an easy one. Typically, knots with a large number of crossings will not nicely generate two-dimensional drawings. This thesis presents an efficient algorithm to generate a knot and to create a nice two-dimensional embedding of the knot. For the purpose of this thesis a drawing is “nice” if the number of tangles in the diagram consisting of half-twists is minimal. More specifically, the algorithm generates prime, alternating Conway algebraic knots in O(n) time where n is the number of crossings …


Discrete Fractional Calculus And Its Applications To Tumor Growth, Sevgi Sengul May 2010

Discrete Fractional Calculus And Its Applications To Tumor Growth, Sevgi Sengul

Masters Theses & Specialist Projects

Almost every theory of mathematics has its discrete counterpart that makes it conceptually easier to understand and practically easier to use in the modeling process of real world problems. For instance, one can take the "difference" of any function, from 1st order up to the n-th order with discrete calculus. However, it is also possible to extend this theory by means of discrete fractional calculus and make n- any real number such that the ½-th order difference is well defined. This thesis is comprised of five chapters that demonstrate some basic definitions and properties of discrete fractional calculus …


Random Walks With Elastic And Reflective Lower Boundaries, Lucas Clay Devore Dec 2009

Random Walks With Elastic And Reflective Lower Boundaries, Lucas Clay Devore

Masters Theses & Specialist Projects

No abstract provided.


Geometric Build-Up Solutions For Protein Determination Via Distance Geometry, Robert Tucker Davis Aug 2009

Geometric Build-Up Solutions For Protein Determination Via Distance Geometry, Robert Tucker Davis

Masters Theses & Specialist Projects

Proteins carry out an almost innumerable amount of biological processes that are absolutely necessary to life and as a result proteins and their structures are very often the objects of study in research. As such, this thesis will begin with a description of protein function and structure, followed by brief discussions of the two major experimental structure determination methods. Another problem that often arises in molecular modeling is referred to as the Molecular Distance Geometry Problem (MDGP). This problem seeks to find coordinates for the atoms of a protein or molecule when given only a set of pair-wise distances between …


Generalized Probabilistic Bowling Distributions, Jennifer Lynn Hohn May 2009

Generalized Probabilistic Bowling Distributions, Jennifer Lynn Hohn

Masters Theses & Specialist Projects

Have you ever wondered if you are better than the average bowler? If so, there are a variety of ways to compute the average score of a bowling game, including methods that account for a bowler’s skill level. In this thesis, we discuss several different ways to generate bowling scores randomly. For each distribution, we give results for the expected value and standard deviation of each frame's score, the expected value of the game’s final score, and the correlation coefficient between the score of the first and second roll of a single frame. Furthermore, we shall generalize the results in …