Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Applied Mathematics

Time-Stepping For Laser Ablation, Harihar Khanal, David Autrique, Vasilios Alexiades Jan 2013

Time-Stepping For Laser Ablation, Harihar Khanal, David Autrique, Vasilios Alexiades

Publications

Nanosecond laser ablation is a popular technique, applied in many areas of science and technology such as medicine, archaeology, chemistry, environmental and materials sciences. We outline a computational model for radiative and collisional processes occurring during ns-laser ablation, and compare the performance of various low and high order time-stepping algorithms.


Hydrodynamic Modeling Of Ns-Laser Ablation, David Autrique, Vasilios Alexiades, Harihar Khanal Jan 2013

Hydrodynamic Modeling Of Ns-Laser Ablation, David Autrique, Vasilios Alexiades, Harihar Khanal

Publications

Laser ablation is a versatile and widespread technique, applied in an increasing number of medical, industrial and analytical applications. A hydrodynamic multiphase model describing nanosecond-laser ablation (ns- LA) is outlined. The model accounts for target heating and mass removal mechanisms as well as plume expansion and plasma formation. A copper target is placed in an ambient environment consisting of helium and irradiated by a nanosecond-laser pulse. The effect of variable laser settings on the ablation process is explored in 1-D numerical simulations.


Models Of Phototransduction In Rod Photoreceptors, Harihar Khanal, Vasilios Alexiades Jan 2008

Models Of Phototransduction In Rod Photoreceptors, Harihar Khanal, Vasilios Alexiades

Publications

Phototransduction is the process by which photons of light generate an electrical response in retinal rod and cone photoreceptors, thereby initiating vision. We compare the electrical response in salamander rods from increasingly more (spacialy) detailed models of phototransduction: 0-dimensional (bulk), 1-dimensional (longitudinal), 2-dimensional (axisymmetric), and 3-dimensional (with incisures). We discuss issues of finding physical parameters for simulation and validation of models, and also present some computational experiments for rods with geometry of mouse and human photoreceptors.


Multiphoton Response Of Retinal Rod Photoreceptors, Vasilios Alexiades, Harihar Khanal Jan 2007

Multiphoton Response Of Retinal Rod Photoreceptors, Vasilios Alexiades, Harihar Khanal

Publications

Phototransduction is the process by which light is converted into an electrical response in retinal photoreceptors. Rod photoreceptors contain a stack of (about 1000) disc membranes packed with photopigment rhodopsin molecules, which absorb the photons. We present computational experiments which show the profound effect on the response of the distances (how many discs apart) photons happen to be absorbed at. This photon-distribution effect alone can account for much of the observed variability in response.


Response Of Dark-Adapted Retinal Rod Photoreceptors, H. Khanal, V. Alexiades, E. Dibenedetto Jan 2004

Response Of Dark-Adapted Retinal Rod Photoreceptors, H. Khanal, V. Alexiades, E. Dibenedetto

Publications

The process of phototransduction, whereby light is converted into an electrical response, in rod and cone photoreceptors in the retina, involves as a key setp, the diffusion of the cytoplasmic, signaling molecules cGMP (cyclic guanosime monophosphate) and Ca2+ diffuse in the cytoplasm (the fluid surrounding the discs). the complex geometry of the rod creates computational difficulties. We present spatio-temporal compuational models for interacctions and diffusion of cGMP and Ca2+ in the cytoplasm of vertebrate rod photoreceptors, as well as numerical simulations fo the response to light of dark-adapted Salamander rods.


Computational Models For Diffusion Of Second Messengers In Visual Transduction, Harihar Khanal Aug 2003

Computational Models For Diffusion Of Second Messengers In Visual Transduction, Harihar Khanal

Publications

The process of phototransduction, whereby light is converted into an electrical response in retinal rod and cone photoreceptors, involves, as a crucial step, the diffusion of cytoplasmic signaling molecules, termed second messengers. A barrier to mathematical and computational modeling is the complex geometry of the rod outer segment which contains about 1000 thin discs. Most current investigations on the subject assume a well-stirred bulk aqueous environment thereby avoiding such geometrical complexity. We present theoretical and computational spatio-temporal models for phototransduction in vertebrate rod photoreceptors, which are pointwise in nature and thus take into account the complex geometry of the …