Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Applied Mathematics

Supplementary Files For "Creating A Universal Depth-To-Load Conversion Technique For The Conterminous United States Using Random Forests", Jesse Wheeler, Brennan Bean, Marc Maguire Aug 2021

Supplementary Files For "Creating A Universal Depth-To-Load Conversion Technique For The Conterminous United States Using Random Forests", Jesse Wheeler, Brennan Bean, Marc Maguire

Browse all Datasets

As part of an ongoing effort to update the ground snow load maps in the United States, this paper presents an investigation into snow densities for the purpose of predicting ground snow loads for structural engineering design with ASCE 7. Despite their importance, direct measurements of snow load are sparse when compared to measurements of snow depth. As a result, it is often necessary to estimate snow load using snow depth and other readily accessible climate variables. Existing depth-to-load conversion methods, each of varying complexity, are well suited for snow load estimation for a particular region or station network, but …


Report: Spatial Facilitation-Inhibition Effects On Vegetation Distribution And Their Associated Patterns, Daniel D'Alessio Aug 2021

Report: Spatial Facilitation-Inhibition Effects On Vegetation Distribution And Their Associated Patterns, Daniel D'Alessio

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Changes in the spatial distribution of vegetation respond to variations in the production and transportation mechanisms of seeds at different locations subject to heterogeneities, often because of soil characteristics. In semi-arid environments, the competition for water and nutrients pushes the superficial plant’s roots to obtain scarce resources at long ranges. In this report, we assume that vegetation biomass interacts with itself in two different ways, facilitation and inhibition, depending on the relative distances. We present a 1-dimensional Integro-difference model to represent and study the emergence of patterns in the distribution of vegetation.


Optimal Control Of Algae Biofilm Growth In Wastewater Treatment Using Computational Mathematical Models, Gerald Benjamin Jones May 2021

Optimal Control Of Algae Biofilm Growth In Wastewater Treatment Using Computational Mathematical Models, Gerald Benjamin Jones

Undergraduate Honors Capstone Projects

Microalgal biofilms are comprised of a syntrophic consortium of microalgae and other microorganisms embedded within an extracellular matrix. Despite significant processes in the application of microalgal biofilms in wastewater treatment, mechanistic understanding and optimization of microalgal biomass yield and productivity under environmental constraints is still lacking. This paper identifies theoretical insights on this challenging biological problem by leveraging novel mathematical and computational tools. In particular, through a computational mathematical model to advance the understanding of microalgal biofilm growth kinetics under environmental constraints through a systematic parameter study. Moreover, design of algae biofilm reactors for optimal biomass yield and productivity in …