Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Applied Mathematics

Morton-Ordered Gpu Lattice Boltzmann Cfd Simulations With Application To Blood Flow, Gerald Gallagher, Fergal J. Boyle Sep 2022

Morton-Ordered Gpu Lattice Boltzmann Cfd Simulations With Application To Blood Flow, Gerald Gallagher, Fergal J. Boyle

Conference Papers

Computational fluid dynamics (CFD) is routinely used for numerically predicting cardiovascular-system medical device fluid flows. Most CFD simulations ignore the suspended cellular phases of blood due to computational constraints, which negatively affects simulation accuracy. A graphics processing unit (GPU) lattice Boltzmann-immersed boundary (LB-IB) CFD software package capable of accurately modelling blood flow is in development by the authors, focusing on the behaviour of plasma and stomatocyte, discocyte and echinocyte red blood cells during flow. Optimised memory ordering and layout schemes yield significant efficiency improvements for LB GPU simulations. In this work, comparisons of row-major-ordered Structure of Arrays (SoA) and Collected …


Data Driven Bayesian Network To Predict Critical Alarm, Joseph Mietkiewicz, Anders Madsen Jan 2022

Data Driven Bayesian Network To Predict Critical Alarm, Joseph Mietkiewicz, Anders Madsen

Articles

Modern industrial plants rely on alarm systems to ensure their safe and effective functioning. Alarms give the operator knowledge about the current state of the industrial plants. Trip alarms indicating a trip event indicate the shutdown of systems. Trip events in power plants can be costly and critical for the running of the operation.This paper demonstrates how trips events based on an alarm log from an offshore gas production can be reliably predicted using a Bayesian network. If a trip event is reliably predicted and the main cause of it is identified, it will allow the operator to prevent it. …


The Effect Of Using A Project-Based Learning (Pbl) Approach To Improve Engineering Students' Understanding Of Statistics, Fionnuala Farrell, Michael Carr Jan 2019

The Effect Of Using A Project-Based Learning (Pbl) Approach To Improve Engineering Students' Understanding Of Statistics, Fionnuala Farrell, Michael Carr

Articles

Over the last number of years we have gradually been introducing a project based learning approach to the teaching of engineering mathematics inDublin Institute of Technology. Several projects are now in existence for the teaching of both second-order differential equations and first order differential equations.We intend to incrementally extend this approach acrossmore of the engineering mathematics curriculum. As part of this ongoing process, practical realworld projects in statistics were incorporated into a second year ordinary degree mathematics module. This paper provides an overview of these projects and their implementation. As a means to measure the success of this initiative, we …


A Soft Condensed Matter Approach Towards Mathematical Modelling Of Mass Transport And Swelling In Food Grains, Michael Chapwanya, N. Misra Aug 2014

A Soft Condensed Matter Approach Towards Mathematical Modelling Of Mass Transport And Swelling In Food Grains, Michael Chapwanya, N. Misra

Articles

Soft condensed matter (SCM) physics has recently gained importance for a large class of engineering materials. The treatment of food materials from a soft matter perspective, however, is only at the surface and is gaining importance for understanding the complex phenomena and structure of foods. In this work, we present a theoretical treatment of navy beans from a SCM perspective to describe the hydration kinetics. We solve the transport equations within a porous matrix and employ the Flory–Huggin’s equation for polymer–solvent mixture to balance the osmotic pressure. The swelling of the legume seed is modelled as a moving boundary with …


A Parametric Analysis Of Domestic Electricity Consumption Patterns In Ireland, Fintan Mcloughlin, Aidan Duffy, Michael Conlon May 2011

A Parametric Analysis Of Domestic Electricity Consumption Patterns In Ireland, Fintan Mcloughlin, Aidan Duffy, Michael Conlon

Conference Papers

This paper reports findings from a study of electrical load profiles obtained from a survey of a representative cross section of approximately 4,000 Irish dwellings. Electricity demand was recorded at half-hourly intervals for each dwelling over a six month period from 1st July 2009 to 31st December 2009. Descriptive statistics are shown for each electrical parameter such as mean, maximum demand, load factor and time of use (ToU) of electricity consumption. The mean power demand and daily mean load factor of the sample was 0.512kW and 23.43% respectively for all dwellings over the monitoring period. A mean daily maximum demand …


The Generation Of Domestic Electricity Load Profiles Through Markov Chain Modelling, Aidan Duffy, Fintan Mcloughlin, Michael Conlon Jul 2010

The Generation Of Domestic Electricity Load Profiles Through Markov Chain Modelling, Aidan Duffy, Fintan Mcloughlin, Michael Conlon

Conference Papers

Micro-generation technologies such as photovoltaics and micro-wind power are becoming increasing popular among homeowners, mainly a result of policy support mechanisms helping to improve cost competiveness as compared to traditional fossil fuel generation. National government strategies to reduce electricity demand generated from fossil fuels and to meet European Union 20/20 targets is driving this change. However, the real performance of these technologies in a domestic setting is not often known as high time resolution models for domestic electricity load profiles are not readily available. As a result, projections in terms of reducing electricity demand and financial paybacks for these micro-generation …


Electromagnetic Scattering Solutions For Digital Signal Processing, Jonathan Blackledge Nov 2009

Electromagnetic Scattering Solutions For Digital Signal Processing, Jonathan Blackledge

Other resources

Electromagnetic scattering theory is fundamental to understanding the interaction between electromagnetic waves and inhomogeneous dielectric materials. The theory unpins the engineering of electromagnetic imaging systems over a broad range of frequencies, from optics to radio and microwave imaging, for example. Developing accurate scattering models is particularly important in the field of image understanding and the interpretation of electromagnetic signals generated by scattering events. To this end there are a number of approaches that can be taken. For relatively simple geometric configurations, approximation methods are used to develop a transformation from the object plane (where scattering events take place) to the …


Self-Authentication Of Audio Signals By Chirp Coding, Jonathan Blackledge, Eugene Coyle Sep 2009

Self-Authentication Of Audio Signals By Chirp Coding, Jonathan Blackledge, Eugene Coyle

Conference papers

This paper discusses a new approach to ‘watermarking’ digital signals using linear frequency modulated or ‘chirp’ coding. The principles underlying this approach are based on the use of a matched filter to provide a reconstruction of a chirped code that is uniquely robust in the case of signals with very low signal-to-noise ratios. Chirp coding for authenticating data is generic in the sense that it can be used for a range of data types and applications (the authentication of speech and audio signals, for example). The theoretical and computational aspects of the matched filter and the properties of a chirp …


A Covert Encryption Method For Applications In Electronic Data Interchange, Jonathan Blackledge, Dmitry Dubovitskiy Jan 2009

A Covert Encryption Method For Applications In Electronic Data Interchange, Jonathan Blackledge, Dmitry Dubovitskiy

Articles

A principal weakness of all encryption systems is that the output data can be ‘seen’ to be encrypted. In other words, encrypted data provides a ‘flag’ on the potential value of the information that has been encrypted. In this paper, we provide a new approach to ‘hiding’ encrypted data in a digital image.

In conventional (symmetric) encryption, the plaintext is usually represented as a binary stream and encrypted using an XOR type operation with a binary cipher. The algorithm used is ideally designed to: (i) generate a maximum entropy cipher so that there is no bias with regard to any …


Converging Flow Between Coaxial Cones, O. Hall, A. D. Gilbert, C. P. Hills Jan 2009

Converging Flow Between Coaxial Cones, O. Hall, A. D. Gilbert, C. P. Hills

Articles

Fluid flow governed by the Navier-Stokes equation is considered in a domain bounded by two cones with the same axis. In the first, 'non-parallel' case, the two cones have the same apex and different angles θ = α and β in spherical polar coordinates (r, θ, φ). In the second, 'parallel' case, the two cones have the same opening angle α, parallel walls separated by a gap h and apices separated by a distance h/sinα. Flows are driven by a source Q at the origin, the apex of the lower cone in the parallel case. The Stokes solution for the …


Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2009

Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

We study the fully three-dimensional Stokes flow within a geometry consisting of two infinite cones with coincident apices. The Stokes approximation is valid near the apex and we consider the dominant flow features as it is approached. The cones are assumed to be stationary and the flow to be driven by an arbitrary far-field disturbance. We express the flow quantities in terms of eigenfunction expansions and allow for the first time for nonaxisymmetric flow regimes through an azimuthal wave number. The eigenvalue problem is solved numerically for successive wave numbers. Both real and complex sequences of eigenvalues are found, their …


Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2007

Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

This paper considers the low-Reynolds-number flow of an incompressible fluid contained in the gap between two coaxial cones with coincident apices and bounded by a spherical lid. The two cones and the lid are allowed to rotate independently about their common axis, generating a swirling motion. The swirl induces a secondary, meridional circulation through inertial effects. For specific configurations complex eigenmodes representing an infinite sequence of eddies, analogous to those found in two-dimensional corner flows and some three-dimensional geometries, form a component of this secondary circulation. When the cones rotate these eigenmodes, arising from the geometry, compete with the forced …


Krylov Subspaces From Bilinear Representations Of Nonlinear Systems, Marissa Condon, Rossen Ivanov Jan 2007

Krylov Subspaces From Bilinear Representations Of Nonlinear Systems, Marissa Condon, Rossen Ivanov

Articles

For efficient simulation of state-of-the-art dynamical systems as arise in all aspects of engineering, the development of reduced-order models is of paramount importance. While linear reduction techniques have received considerable study, increasingly nonlinear model reduction is becoming a significant field of interest. From a circuits and systems viewpoint, systems involving micromachined devices or systems involving mixed technologies necessitate the development of reduced-order nonlinear models. From a control systems viewpoint, the design of controllers for nonlinear systems is greatly facilitated by nonlinear model reduction strategies. To this end, the paper proposes two novel model-reduction strategies for nonlinear systems. The first involves …


An Explicit Mapping Between The Frequency Domain And The Time Domain Representations Of Nonlinear Systems, Marissa Condon, Rossen Ivanov Jan 2005

An Explicit Mapping Between The Frequency Domain And The Time Domain Representations Of Nonlinear Systems, Marissa Condon, Rossen Ivanov

Articles

Explicit expressions are presented that describe the input-output behaviour of a nonlinear system in both the frequency and the time domain. The expressions are based on a set of coefficients that do not depend on the input to the system and are universal for a given system. The anharmonic oscillator is chosen as an example and is discussed for different choices of its physical parameters. It is shown that the typical approach for the determination of the Volterra Series representation is not valid for the important case when the nonlinear system exhibits oscillatory behaviour and the input has a pole …


Direct Least-Squares Ellipse Fitting, Jane Courtney, Annraoi Depaor Aug 2004

Direct Least-Squares Ellipse Fitting, Jane Courtney, Annraoi Depaor

Conference Papers

Many biological and astronomical forms can be best represented by ellipses. While some more complex curves might represent the shape more accurately, ellipses have the advantage that they are easily parameterised and define the location, orientation and dimensions of the data more clearly. In this paper, we present a method of direct least-squares ellipse fitting by solving a generalised eigensystem. This is more efficient and more accurate than many alternative approaches to the ellipse-fitting problem such as fuzzy c-shells clustering and Hough transforms. This method was developed for human body modelling as part of a larger project to design a …


On The Empirical Balanced Truncation For Nonlinear Systems, Marissa Condon, Rossen Ivanov Jan 2004

On The Empirical Balanced Truncation For Nonlinear Systems, Marissa Condon, Rossen Ivanov

Articles

Novel constructions of empirical controllability and observability gramians for nonlinear systems for subsequent use in a balanced truncation style of model reduction are proposed. The new gramians are based on a generalisation of the fundamental solution for a Linear Time-Varying system. Relationships between the given gramians for nonlinear systems and the standard gramians for both Linear Time-Invariant and Linear Time-Varying systems are established as well as relationships to prior constructions proposed for empirical gramians. Application of the new gramians is illustrated through a sample test-system.


Flow Patterns In A Two-Roll Mill, Christopher Hills Jan 2002

Flow Patterns In A Two-Roll Mill, Christopher Hills

Articles

The two-dimensional flow of a Newtonian fluid in a rectangular box that contains two disjoint, independently-rotating, circular boundaries is studied. The flow field for this two-roll mill is determined numerically using a finite-difference scheme over a Cartesian grid with variable horizontal and vertical spacing to accommodate satisfactorily the circular boundaries. To make the streamfunction numerically determinate we insist that the pressure field is everywhere single-valued. The physical character, streamline topology and transitions of the flow are discussed for a range of geometries, rotation rates and Reynolds numbers in the underlying seven-parameter space. An account of a preliminary experimental study of …


Eddy Structures Induced Within A Wedge By A Honing Circular Arc, C. P. Hills Jan 2001

Eddy Structures Induced Within A Wedge By A Honing Circular Arc, C. P. Hills

Articles

In this paper we outline an expeditious numerical procedure to calculate the Stokes flow in a corner due to the rotation of a scraping circular boundary. The method is also applicable to other wedge geometries. We employ a collocation technique utilising a basis of eddy (similarity) functions introduced by Moffatt (1964) that allows us to satisfy automatically the governing equations for the streamfunction and all the boundary conditions on the surface of the wedge. The circular honing problem thereby becomes one-dimensional requiring only the satisfaction of conditions on the circular boundary. The advantage of using the Moffatt eddy functions as …


Eddies Induced In Cylindrical Containers By A Rotating End Wall, Christopher Hills Jan 2001

Eddies Induced In Cylindrical Containers By A Rotating End Wall, Christopher Hills

Articles

The flow generated in a viscous liquid contained in a cylindrical geometry by a rotating end wall is considered. Recent numerical and experimental work has established several distinct phases of the motion when fluid inertia plays a significant role. The current paper, however, establishes the nature of the flow in the thus far neglected low Reynolds number regime. Explicitly, by employing biorthogonality relations appropriate to the current geometry, it is shown that a sequence of exponentially decaying eddies extends outward from the rotating end wall. The cellular structure is a manifestation of the dominance of complex eigensolutions to the homogeneous …


Rotary Honing: A Variant Of The Taylor Paint-Scraper Problem, Christopher Hills, H. Moffatt Jan 2000

Rotary Honing: A Variant Of The Taylor Paint-Scraper Problem, Christopher Hills, H. Moffatt

Articles

The three-dimensional Row in a corner of fixed angle α induced by the rotation in its plane of one of the boundaries is considered. A local similarity solution valid in a neighbourhood of the centre of rotation is obtained and the streamlines are shown to be closed curves. The effects of inertia are considered and are shown to be significant in a small neighbourhood of the plane of symmetry of the flow. A simple experiment confirms that the streamlines are indeed nearly closed; their projections on planes normal to the line of intersection of the boundaries are precisely the 'Taylor' …


Shadow Casting Phenomena At Newgrange, Frank Prendergast Jan 1991

Shadow Casting Phenomena At Newgrange, Frank Prendergast

Articles

A digital model of the Newgrange passage tomb and surrounding ring of monoliths known as the Great Circle is used to investigate sunrise shadow casting phenomena at the monument. Diurnal variation in shadow directions and lengths are analysed for their potential use in the Bronze Age to indicate the passage of seasonal time. Computer-aided simulations are developed from a photogrammetric survey to accurately show how three of the largest monoliths, located closest to the tomb entrance and archaeologically coded GC1, GC-1 and GC-2, cast their shadows onto the vertical face of the entrance kerbstone, coded K1. The phenomena occur at …