Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Applied Mathematics

Social Aggregation In Pea Aphids: Experiment And Random Walk Modeling, Christa Nilsen, John Paige, Olivia Warner, Benjamin Mayhew, Ryan Sutley, Matthew Lam '15, Andrew J. Bernoff, Chad M. Topaz Jan 2013

Social Aggregation In Pea Aphids: Experiment And Random Walk Modeling, Christa Nilsen, John Paige, Olivia Warner, Benjamin Mayhew, Ryan Sutley, Matthew Lam '15, Andrew J. Bernoff, Chad M. Topaz

All HMC Faculty Publications and Research

From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. …


Nonlocal Aggregation Models: A Primer Of Swarm Equilibria, Andrew J. Bernoff, Chad M. Topaz Jan 2013

Nonlocal Aggregation Models: A Primer Of Swarm Equilibria, Andrew J. Bernoff, Chad M. Topaz

All HMC Faculty Publications and Research

Biological aggregations such as fish schools, bird flocks, bacterial colonies, and insect swarms have characteristic morphologies governed by the group members' intrinsic social interactions with each other and by their interactions with the external environment. Starting from a simple discrete model treating individual organisms as point particles, we derive a nonlocal partial differential equation describing the evolving population density of a continuum aggregation. To study equilibria and their stability, we use tools from the calculus of variations. In one spatial dimension, and for several choices of social forces, external forces, and domains, we find exact analytical expressions for the equilibria. …


Existence And Qualitative Properties Of Solutions For Nonlinear Dirichlet Problems, Alfonso Castro, Jorge Cossio, Carlos Vélez Jan 2013

Existence And Qualitative Properties Of Solutions For Nonlinear Dirichlet Problems, Alfonso Castro, Jorge Cossio, Carlos Vélez

All HMC Faculty Publications and Research

Sign-changing solutions to semilinear elliptic problems in connection with their Morse indices. To this end, we first establish a priori bounds for one-sign solutions. Secondly, using abstract saddle point principles we find large augmented Morse index solutions. In this part, extensive use is made of critical groups, Morse index arguments, Lyapunov-Schmidt reduction, and Leray-Schauder degree. Finally, we provide conditions under which these solutions necessarily change sign and we comment about further qualitative properties.